怎样编好冷冲压工艺

南京国营长江机器制造厂 蒋惠钧

(210037)

善于现场工艺处理

表27

序号	质量问题	原因分析	处 理 方 法		
I毛 刺问 題	冲修有较厚的拉 断毛刺。				
	切断边缘有 明显斜角。	凸 凹 模 间	①调正凸四模间隙;		
	断面粗糙,裂纹,凹坑。	隙过大。			
			②修磨模具工作部分。		
	冲件上部有齿 形毛刺。	凸凹模间隙过小。			
	冲件一边有明显 斜角的毛刺。	凸凹模中心不重合,间隙不匀。			
	冲件周边超过正	模具工作部分刃口磨损变钝。	①磨利刃口;		
	常毛刺(毛刺较 大)。	供於 上作 中分 为 口 店 例 义 祀 。	②定期检查毛刺,控制毛刺。		
Ⅱ 零件 不平 翘曲	零件不平、翘曲	①凸凹模间隙过大;	①调正模具;		
		②凹模口部有反锥角;	②修磨凹模刃口;		
		③材料内部有应力;	③校平或退火消除应力;		
		④模具顶杆小于零件接触面, 致使顶出零件不平。	④更换顶杆。		
Ⅲ 尺精问 類	冲件外形与冲孔 内形轴线偏移位 置;	①挡料钉位置不正;	①检查模具;		
		②导头与孔配合间隙太大;	②更换挡料钉或定位导头;		
		③定位部分不正;	③对多孔冲件,建议两个定位钉定位		
		④操作时条料没有正确地沿导尺 和挡料钉送料或进距。	④注意操作方法,严格工艺要求。		
	冲件压伤及变形	①模具内部有碎屑脏物;	①应保持模具清洁, 无碎屑脏物;		
IA		②模具卸料, 压边装置不正确。	②修正卸料压边装置。		
其它	冲件上缺一个孔 或少几个小孔	小冲头工作时断裂;	①经常检查模具,注意零件质量; ②对小孔建议模具设计加防护套。		

在产品零件按所编的工艺过程卡进行生产的过程中,往往由于产品设计、工艺方法、工人操作、原材料性能状态、机床设备、模具等的因素,有时会出现产品零件的一些质量问题。冲压工艺人员对出现的质量问题,要善于和及时现场工艺处理。这种现场的工艺处理是十分重要的,它不但能保证产品零件正常生产,而且能在工艺处理过程中,理论联系实际,增加实际知识,直接提高工艺人员的工艺技术水平。所以,也是工艺总结提高的一个重要环节。

工艺的现场处理,要进行综合分析,从现场产生的质量问题人手,找出产生问题的原因。然后及时解决或采取补救和改进措施。

1 对冲蒙住的现场工艺处理

冲裁件的现场工艺处理可参考表27。

注: 装中的"冲件周边超过正常毛刺",是指超过冲裁金属零件允许范围的毛刺高度。冲裁金属零件允许范围的毛刺高度见表28(供参考)。

表28 一般冲裁金属零件允许范围毛刺高度

材料厚度	生产时允许 毛刺高度	试模时允许 毛刺高度
≪0.3	≤0.0 5	≤0.015
>0.3~0.5	≪0.08	≪0.02
>0.5~1.0	≪0.10	€0.03
>1.0~1.5	≪0.13	≤0.04
<1.5~2.0	€0,15	€0.05

在冲裁加工中,产生不同程度的 毛刺 是难免 的。但毛刺的产生,特别超过正常毛刺,不但影响 零件质量、而且对有些转入下道弯曲、引伸的零 件,在变形过程中,易产生开裂,造成废品;冲件 有了毛刺, 压弯, 引伸过程中还会划伤模具, 加剧 模具耗损;使用过程中,有了毛刺的冲件,不小心 划伤操作者, 又威胁人身安全。所以, 根据零件的 使用要求, 冲裁后要去除毛刺。冲裁件去毛刺的常 用方法是滚光。滚光是冲压的辅助工序,它能消除 毛刺, 滚去尖角; 同时还能去除氧化皮, 油污和锈 迹。滚光的设备一般是滚筒。所以,又称"滚筒去 毛"。其磨料常用的是碎砂轮,碎青石加木屑;对 精密零件, 细小零件用细砂碎皮草木屑(无树脂木 材的木屑)或针对性的其它材料。一般滚1800~ 3600s。滚料和滚光时间要根据零件的使用要求、 材料性能、种类; 材料厚度, 零件大小和复杂程度

《电子工艺技术》1992年第3期

决定

对冲裁后供弯曲、引伸的毛坯件去毛刺, 滚光 应在弯曲和引伸之前进行。

对薄平面、细长的冲件,为罄免变形,可用较多的木屑滚光。滚光后零件应筛除干净。木屑发黑,脏物太多,应及时更换。

2 对弯曲件的现场工艺处理

弯曲的质量问题与材料状态,材料纹向与打弯 方向,模具工作部分圆角半径、模具结构,弯曲设 备,压力大小,冲压速度等有直接关系。常遇到的 问题是;弯出形状尺寸不符图纸产品零件,弯曲裂 纹,表面压伤和扭曲等。

对弯曲件的涌场工艺处理

1 形状尺寸与图纸不符

质量问题:

弯脚高度不符图纸或两弯边不一致;原因分析;

弯曲时毛坯产生移动,是位装置不正确。 处理方法。

- ①加强压板压力,压紧毛坯;
- ②采用增加中心孔工艺定位, 使毛坯不发生移 动。

质量问题:

弯曲后引起孔变形。

- ①压弯时毛料移动;
- ②以孔定位时,凹模表面与弯件表面摩擦受拉 而使孔变形。

处理方法:

- ①合理改进模具定位及弯曲形式,如L可改 V 形式弯曲:
 - ②加大顶料板压力。
- Ⅱ 弯曲裂纹、表面拉伤质量问题:

弯角裂纹或断裂。

原因分析:

- ①弯曲内半径太小;
- ②材料纹向与弯曲线一致;
- ③毛坯件毛刺或周边裂纹;
- ④材料延伸率低,塑性差;
- ⑤材料经酸洗产生氢脆;
- ⑥凹模圆角半径太小。

处理方法:

- ①适当加大弯曲半径;
- ②使材料纹向与弯曲线垂直或斜角30°~45°

• 53 👱

- ③周边去毛刺,修去裂纹;
- ④退火, 使材料软化;
- ⑤酸洗后去氢处理;
- ⑥弯曲时, 使毛刺面向弯曲凸模;
- ⑦加润滑剂,适当增大凹模圆角半径。

质量问题:

弯件表面有刻痕。

原因分析:

凹模表面粗糙或有碎屑脏物。

处理方法:

修光凹模表面或清洁表面。

质量问题:

弯曲表面挤光变薄。

原因分析:

- ① 凹煤 围 角大小;
- ②凸模与凹模间隙大小。

处理方法:

- ①增大凹樽圆角半径;
- ②修正凸、凹模间隙。

Ⅲ 扭曲和挠度

质量问题:

U形弯件底部有曲度。

原因分析:

凹模内无顶料装置。

处理方法:

增加顶料装置或加修正工序。

质量问题:

V形弯件在宽度方向有弓形挠度。

原因分析:

由于弯件宽度方向的延伸和收缩量不一致,产生弓形挠度。

处理方法:

- ①增加压弯力;
- ②使材料纹向与弯曲方向垂直;
- ③增加校正工序。

质量问题:

弯件扭转。

原因分析:

- ①冲压工序排列不当;
- ②模具结构不当,如顶出器和凹模间隙过大, 位置分布作用力不平衡等。

处理方法:

- ①调正冲压工序;
- ②修正模具结构,使位置分布作用力平衡;

. 54

- ③增加修正工序。
- 3 对引伸件的现场工艺处理

引伸零件的质量问题,由于引伸是复杂的变形 过程,影响因素很多。它涉及材料表面质量、材料 状态(软、硬)、坯料大小,压力机速度、吨位, 模具结构、工人操作、调正等一系列问题。工艺人 员在处理现场工艺问题时,要善于冷静地从质量现 象人手,细心分析,找出原因,及时解决。

对引伸件的现场工艺处理。

I

质量问题:

引伸件裂纹和破裂。

原因分析:

- ①原材料塑性较差,表面有划痕,伤痕;
- ②压边太大或不均;
- ③] 遵工作部分有磨损,起毛;
- ④毛坯尺寸太大;
- ⑤凹模圆角太小;
- ⑥引伸系数太小;
- ⑦材料太硬,退火软化不够或未按工艺加润滑
- 油;
- ⑧上道引伸高度小;
- ⑨压边圈表面不光, 有损坏, 压痕。

处理方法:

- ①修正材料表面或更换材料;
- ②调正压边力;
- ③修光凹模工作部分;
- ④修正毛坯尺寸;
- ⑤加大凹模圆角;
- ⑥增加工序,减少变形量;
- ⑦退火软化,酸洗去脏,加润滑油或重选适当 润滑油;
 - ⑥修正上道引伸高度;
 - ⑨磨光压边卷表面;
 - ⑩调正模具。

 \mathbf{I}

质量问题:

引伸件起皱。

原因分析:

- ①压边力不是或压边力不均匀;
- ②毛坯尺寸较小;
- ③凸、凹模间隙太大;
- ④板料厚度不均;
- ⑤润滑油不当,涂润滑油过多,局部进料过多

《电子工艺技术》1992年第3期

引起皱纹。

处理方法:

- ①增加压边力,调正压边力:
- ②适当加大毛坯尺寸;
- ③调正凸、凹模间隙;
- ④选择板厚均匀材料;
- ⑤均匀涂润滑油。

Ш

质量问题:

引伸件口部高低不一。

原因分析:

- ①毛坯与凸、凹模中心不合,
- ②材料厚薄或模具间隙不均;
- ②凹礁圆角不匀。

、 处理方法:

- ①调正定位;
- ②核正模具间隙或更换材料;
- ③修正凹模圆角。

IV

质量问题:

工件外形不平正。

原因分析:

- ①凸模上无出气孔;
- ②材料弹性回跳;
- ③凸、凹模间隙太大。

处理方法:

- ①增加出气孔;
- ②增加整形工序;
- ③调正凸、凹模间隙。

٧

质量问题:

工件底部转角处材料变薄。

原因分析:

- ①材料表面粗糙;
- ②材料厚度太厚;
- ③凸模圆角半径与直壁衔接不好;
- ④凹模圆角半径小;
- ⑤变形程度大,引伸系数小;
- ⑥凸、凹模间隙太小;
- ⑦润滑油不好;
- ⑧压力过大。

处理方法:

- ①修正材料或更换材料;
- ②更换合适材料;
- 《电子工艺技术》1992年第3期

- ③修正模具;
- ④修大凹模 圆角半径;
- ⑤调正工序变形量;
- ⑥调正凸、凹模间隙;
- ⑦选择合适的润滑油。

第七讲 慎重及时工艺更改

冷冲压零件工艺过程卡在生产过程中,有时会出现一些问题,有属于设计差错的有属于工艺差错的;更多的则是改进的、补充的。为保证正常生产,这些问题须及时更改。这样,工艺在生产中得到改正和完善。另外,随着企业技术力量的发展,设备的更新,加工手段的变化,有些工艺已不相适应,也须工艺更改。但更改工艺必须真重,因为一份完整的工艺是一环接一环的,而且还涉及一些设备工装,加工技术等等。然而,更改工艺又必须及时,因冷冲压件一般生产数量多,批量大,重复工艺差错,重复出现问题,会造成大的损失。所以,慎重及时更改工艺,是搞好冷冲压工艺工作不可忽视的又一方面。

1 工艺更改的内容

工艺更改的内容一般是

- ①产品设计零件形状或尺寸更改后相应的工艺 更改。
- ②工艺差错、遗留:如毛坯料太大或太小,数据遗留,改正工艺尺寸、工艺错误等的工艺更改。
- ③设备更新,工作地变化。原工艺过程卡上填写的设备与企业现有设备不符,加工手段的改进与原工艺已不相适应的工艺更改。
- ④操作者的合理化建议,经工艺人员采纳的工 艺更改。
 - ⑤技术改进,技术革新的工艺更改。
 - ⑥其它一些技术性的工艺更改。

工艺更改应出工艺更改通知单, 经有关部门会签 生效, 方可实施。如试制、单件生产未归技术档案的工艺文件, 不涉及其它单位的, 可直接在工艺文件上更改, 但必须签名, 并注上更改标记和更改日期, 涉及有关单位亦正在生产的或产品定型, 技术资料(工艺文件)已经归技术档案的, 必须及时发工艺更改通知单, 以确保企业有秩序 地 正常生产。

2 冷冲压零件工艺文件更改通知单的一般参考格式

冷冲压零件工艺文件更改通知单的一般格式可 参考表29

• 55 •

装29 冷冲压零件工艺文件更改通知单

	冷冲压零件工艺文件更改通知单					编号:	
•	更改文件	零件名称		所属	更改	Λ	
	文以文件	零件图号	ı	产品	标记:		
	更改原因:	- < 7			Mille	<i>)</i> \	
	更改前:		2	更改后			
	对在制品处理意见 实施期限						
) ,1	和说明	名称 产品	图号 更改标	记发发		备注:	
1 /				往		ļ	
使用性	应更改文件			ais			
	应更改文件	名 日期	会签单位	કોંડ	日期	第 页	
	应更改文件	名 日期	会签单位	# IT		第页	

注:如工艺更改影响模具的,则要通知模具设计师和模具制造者放时更改模具。

(待 续)

• 56 •

《电子工艺技术》1992年第3期