生产铸造锌合金锭之管见

中南大学 田荣璋*

摘 要 对铸造锌合金锭市场进行了分析,对铸造锌合金锭品质进行了评价,同时对我国生产铸造锌合金锭企业提出了建设性意见。

关键词: 锌合金 合金锭 铸造合金

中图分类号:TG146.1+3 文献标识码:A 文章编号:1001-2449(2002)05-0054-02

1 铸造锌合金锭市场分析

我国锌合金铸造生产的兴起 ,是" 改革开放 "以来的事。压铸行业飞速发展 ,带动了铸造锌合金锭供应企业的发展 ,近几年供需两旺。我国铸造锌合金的消耗量逐年猛增 ,1997 年消耗 16 万 t ,1998 年消耗 19 万 t ,1999年消耗 23 万 t ,2000年消耗 26 万 t ,2001年消耗近 30 万 t ,这个行业真是方兴未艾。

另外,以 2000 年为例,消耗 26 万 t 中,进口铸造锌合金锭约 10 万 (占 38.5%),从港台购进的铸造锌合金锭(含在大陆设厂生产的)约 5 万 (占 19.2%),国内生产的铸造锌合金锭约 11 万 (占 42.3%),铸造锌合金锭市场构成三足鼎立之势。

据调查 进口的铸造锌合金锭品质最好 特别是太平洋金属矿业有限公司生产的 澳洲 3 号"近几年在我国的销售量一直保持在 6 万 t 以上。港台的铸造锌合金锭品质居第二。而我国内地生产的铸造锌合金锭 品质排为第三。我国是产锌大国 ,每年锌锭大量出口。可是 ,铸造锌合金锭出口形势很不好 ,据统计 ,2001 年 1 ~4 月份 ,进口 3.8 万 t ,而出口仅 6.2 t。主要原因是化学成分不合格 ,品质不稳定。

2 铸造锌合金锭的品质分析

2.1 铸造锌合金锭化学成分

国家标准 GB8738 – 88 中铸造锌合金锭共 16 个牌号 应用最多的是 ZZnAlD4(包括 ZZnAlD4A)。 ZZnAlD4与"澳洲 3 号"相同 均属 Zn-Al 系 加有少量 Mg ,为共晶类型合金。 Zn-Al 合金共晶点成分为 u(Zn)= 95%(见 Zn-Al 相图),其组织为 α + β 共晶体。 共晶合金流动性及铸造性能好。但是 ,从抗拉强度、伸长率、冲击韧度和耐蚀性综合考虑 ,为了满足工业要求 ,一般取亚共晶成分 ,如 ZZnAlD4 ,u(Al)= 3.9% ~ 4.3% ,还加有少量镁 ,u(Mg)= 0.03% ~ 0.06% ,改善力学性能和耐蚀性能。这样合金的组织 基本上是 β +(α + β)组成的 ,即初生 β 晶体 ,加上 α + β 共晶体。 其实 α 在 275 ∞ 还要发生共

析分解 因此 ,铸造锌合金零件看起来简单 ,其实很难掌握。锌合金的' 老化 '令人担忧 ,这是长期未得到大力发展的原因。Zn-Al 合金中特别是含有少量 Pb 和 Cu 等元素使耐蚀性能极度变坏。除此之外 ,氢的影响值得注意 ,氢有诱导裂纹的机制。Sn 和 Cd 同样也是加速腐蚀的元素 ,因此必须严格控制。Mg 的质量分数在 0.05% 左右时有明显削弱杂质有害影响的作用。

国家标准 GB8738 – 88 中规定的 ZZnAID4 铸造锌合金锭化学成分见表 1。世界各国的标准基本相同,都是供制造锌合金铸件用的。

表 1 合金化学成分

 合金
 w_B
 u(杂质)

 牌号
 Al
 Mg
 Zn
 Fe
 Pb
 Cd
 Sn
 Cu

 ZZnAlD4A
 3.9~4.3
 0.03~0.06 余量
 0.03
 0.003
 0.003
 0.001
 0.03

 ZZnAlD4
 3.9~4.3
 0.03~0.06 余量
 0.1
 0.005
 0.003
 0.002
 0.03

我国铸造锌合金锭市场基本上集中在广东省、浙江省和上海市3个地区,其他省市目前市场不大,都有些销售。就广东省一个省年消耗铸造锌合金锭不下10万t,主要是港台在广东省设了不少压铸厂的缘故。

我国铸造锌合金锭生产企业不少,多数偏小,技术落后,设备陈旧。大型锌冶炼厂多年来一直致力于开发铸造锌合金锭。如湖南省每年生产5万多t,广东省生产3万t左右,浙江省、上海市每年也都有些生产。

从市场上随机购买 7 家企业的用量最多的 ZZnAlD4 铸造锌合金锭做样品,其中深圳的2家,广州 的2家,株洲的1家,长沙的1家及进口的1家。

观察市场上供应的铸造锌合金锭的状况,这些铸锭样品的化学成分见表 2。从表 2 中看出,我国铸造锌合金锭成分不准确,杂质含量高。不按优质型锭(A)而按普通型锭要求;成分不合格者有 B,D,F3家(占43%)。可以认为,这种产品市场可信度较低。

在这 7 个样品中 ,A 达到了 ZZ_nAlD4A 标准。对 4 个合格样品进行了金相分析和扫描电镜电子探针分析 ,可以肯定 ,金相组织正常。合金中含夹杂物多少、大小、分布不同 ,按其综合判断 ,从含夹杂物多向少排列 ,则 E > $A\gg C$,G 。这些物质从何而来 ,可能是精炼剂、造渣剂

^{*} 田荣璋 ,男 ,1930 年出生 教授 ,中南大学出版社 ,长沙(410083) 电话 0731 - 8879766 ,3 收稿日期 2002 - 06 - 30

的残留及原始合金净化不彻底造成的。

表 2 化学成分表

u(杂质) 合金 $w_{\rm R}$ 牌号 Mg Zn Fe Pb CdA(株洲) 4.06 0.045 余 0.003 4 0.001 0.001 < 0.001 0.001 3 B(深圳) 4.30 0.027 余 0.005 2 0.180 0.001 2 0.007 8 0.850 0 (长沙) 3.94 0.046 余 0.002 0 0.004 0.001 3 < 0.001 0.001 5 D(广州) 4.08 0.077 余 0.004 2 0.005 6 0.001 0 0.002 2 0.920 0 氏广州) 4.05 0.048 余 0.001 8 0.005 0.001 3 < 0.001 0.001 0 **K**(深圳) 3.85 0.029 余 0.005 4 0.005 8 0.001 4 < 0.001 0.001 2 (送口) 4.30 0.051 余 0.003 6 0.005 0.001 0 < 0.001 0.001 0

2.2 铸造锌合金锭的性能分析

对铸造锌合金锭而言,无力学性能要求,为了比较,在同等条件下进行了力学性能测试(其实,生产铸造锌合金锭企业,除注意化学成分外,也应经常关心力学性能)。测定数据见表3。

表 3 力学性能表

合金编号	$\sigma_{ m b}/$	$\sigma_{0.2}$	δ /	$a_{\rm k}/$	HRS	E/ GPa	注
ㅁ 쬬 게이 그	MPa	MPa	% ((J·cm ⁻²)	шь	GPa	
A(株洲)	194	187	0.24	23.5	101	842	性能是多个试
α长沙)	226	191	0.65	49.5	103	845	样的平均值 ,所
E(广州)	229	192	0.52	42.8	106		用工艺条件完
食进口)	226	179	0.76	45.7	75	889	全相同

力学性能中,伸长率 G > C > E > A,而冲击韧度则 $C > G > E \gg A$ 。 硬度 G 最小,而国产的 A,C 和 E 相差不大。抗拉强度 E > G, $C \gg A$,而屈服强度 E > C > A > G。

合金流动性是用自制装置,在完全相同条件下测 100~g 合金直线流动长度,其结果是 G 为 259~mm,C 为 258~mm,A 为 224~mm,E 为 241~mm。

气体含量利用第 1 气泡法 ,其相对关系是 G < 666 Pa ,C 为 666 Pa ,A 为 10 132 Pa ,E 为 14 398 Pa。

合金熔点均在 370.8~388.8 ℃之间。

根据以上测试的各个项目 河汇总成一个表 见表 4。

表 4 测试结果统计表

排戶	茅 $\sigma_{ m b}$	δ	$a_{ m k}$	流动性	含气量	含夹 杂量	化学 成分	小计
1	E	G	С	G	G	G ,C	C ,A	4G 3C ,1E ,1A
2	C ,G	C	G	C	C	-	G Æ	3G AC ,1E
3	-	E	E	A	A	A	_	3A 2E
4	A	A	A	E	E	E	_	3A 3E

注 ① 表中排序系作者所为,不是分级,仅表差异和优劣,从 1 至 4 ,1 为好 4 为差;

② 一栏中同时列为两个符号 ,如 C ,G 和 C ,E 表示相等 ,C ,A 表示成分可靠性相同。

3 分析讨论

(1) A, C, E, G, 化学成分均合格, 但 E和 G 杂质 Pb 含量(质量分数,下同)为 0.005%, G含 Al量为 4.3%, 位标准的允许极限,有一定的危险性。

(2)从排序来看,G最好。但是,冲击韧度不如 C, 化学成分中 Al 含量(4.30%)和杂质 Pb含量(0.005%)偏高。不管怎么说,进口的铸造锌合金锭已取得了用户信任,在我国市场中已占有很大份额,可以理解了。

其实 C 比 G 相差甚微 ,有的方面(如冲击韧度和化学成分)比 G 还好 ,应属与 G 同等水平的。

A和E都是我国生产的比较好的铸造锌合金锭,不足之处是含夹杂和气体比G和C多些影响力学性能、流动性和使用(工艺)性能,用户欠满意,甚至会遭退货。应说一句,有些事是用户应负责任的,用户压铸生产技术水平不高造成的问题,不能都怪铸造锌合金锭品质不好。

关于成分和性能稳定的问题 本文还不能提出意见和看法 因为没做跟踪试验。

- (3)从测试数据差异来看 A 和 E 完全可以达到 G 和 C 的水平 A 的水平 A 的水平 A 的水平 A 是改造生产工艺和提高生产技术水平 A 有的还需改造生产设备。因为生产铸造锌合金锭已不是什么高新技术了 A 主要靠企业重视。
- (4)重要的是一些企业搞假冒伪劣产品投放市场, 搅乱了市场游戏规则。更重要的是他们占有近半边江山,把中国自己的市场搞得无信誉可言,成为害群之马。

中国已经进入世界贸易组织(WTO),像铸造锌合金锭这类产品无法用文件资料和标准来保护自己,他国亦然。因为这类产品各国标准基本相同,主要靠产品自身化学成分合格、产品品质优秀和长期(包括供货)稳定来获得用户信赖。国际贸易是互动的、平等的,能进来也能出去。产锌大国,不能总是出口锌锭进口锌合金吧!

参加本项工作的还有周善初副教授和韩继伟高级实验师,在此表示衷心地感谢!

(编辑:刘 卫)

"铸造世界报"征订启事

"铸造世界报"是中国机械工程学会铸造学会与福士科铸造材料(中国)有限公司共同主办的大 16 开本铸造专业月刊。本刊主要报道学会活动、行业发展方向和动态、新技术发展前沿动向、经营策略和相关政策法规、国外最近铸造新技术和世界各国铸造生产发展状况;兼备技术性、经济性、知识性和政策性。

需要者请与《铸造世界报》编辑部联系。

地址 沈阳市铁西区云峰南街 17号 邮编:110022

电话 1024 - 85610108 25852311 - 206

传真 1024 - 25855793

联系人 淳子海 王淑芳

万方数据