非金属材料上的电镀

用非金属件代替金属件可节约金属,简化加工工艺,降低成本。但由于非金属本身固有的性质,限制了它的使用范围。非金属材料电镀,就是用电沉积的方法将非金属表面金属化,使其具有金属光泽、能导电、导磁、焊接,并能提高其机械性能和热稳定性。因而扩大了非金属材料的使用范围。非金属材料,可以电镀,也可采用真空离子镀,例如玻璃镀铝汽车各种灯、塑料镀铝、镀银等。

第一节塑料电镀

非金属材料电镀中,塑料电镀占的比重较大,其中又以 ABS 塑料电镀制品应用最广,工艺也比较成熟。所以塑料电镀主要介绍 ABS 塑料电镀工艺。其他塑料以及非金属材料电镀工艺与 ABS 塑料大体相似,主要差别在于前处理。

一、ABS 塑料电镀

ABS 塑料是丙烯腈(A)、丁二烯(B)和苯乙烯(S)的三元共聚物。ABS 塑料中三种成分的比例可在很宽的范围内变化,但作为电镀用的 ABS 塑料,其成分比例则需控制在一定范围内,否则将影响镀层与塑料基体的结合。因此,最好选用电镀级的 ABS 塑料。

(一) ABS 塑料的成分对电镀的影响

1. 丁二烯的含量

ABS 塑料中丁二烯的含量高,则流动性好,成型容易,镀层的附着力好,但太高也会影响镀层与基体的结合。电镀级 ABS 塑料,丁二烯含量应控制在 18%~23%。

2. 水分的含量

ABS 颗粒很容易吸水。作为电镀用的 ABS 塑料,其含水量不能高于 0.1%,否则压注后在零件表面会产生小气泡,电镀后气泡会更大。

3. 再生料及杂质

要电镀的 ABS 塑料,其成分必须一致,不允许混入其他杂质。对相同成分的再生料,也尽可能不用。若非用不可,必须经过试验并严格控制再生料的用量<20%。否则影响镀层与基体的结合。

- (二)塑料零件的外形设计和模具设计
- 1. 塑料零件外形设计的原则
- (1)零件表面应平滑,不要求镜面光泽的地方,尽可能做成梨点状或压花纹,以便于粗化,提高镀层附着力,并掩盖小的缺陷和伤痕。
- (2) 不应有盲孔,如必须有时,其深度应为它的直径的 $1/2\sim1/3$ 。槽或孔之间的距离不要太近,其边缘都应倒圆。
 - (3)零件应有足够的强度,壁厚最好大于3mm,最薄不小于1.9mm。
 - (4) 不应有锐边、尖角和锯齿形, 若必须有时, 其边缘应尽量倒圆。
 - (5) 尽量避免大面积平面。
- (6) 尽量不用金属镶嵌件。若必须用时,应选用铝来制作。镶嵌件周围的塑料应有足够的厚度,并且要倒圆角。
- (7)零件上尽可能留出几个装挂的位置,以便获得良好的均匀镀层。装挂位置应设计在 不影响外观的部位,并注意防止薄壁零件变形。
 - 2. 模具设计的原则
 - (1)模具内应留排气孔。
 - (2)分离线和熔接线最好在内部,不要在外面明显部位。
 - (3) 浇道大一些较好,最好呈圆形断面,直径一般为 5mm~10mm,并且不要太长。

- (4) 浇口应设在不明显位置。对较大的塑料零件,浇口应尽量多增加几个。
- (三)塑料零件的成型工艺
- (1) 原材料应在 80℃~90℃温度下烘干 4h, 以去除残留水分。
- (2) 充分混炼,以使各成分、温度均匀。
- (3) 尽可能不使用脱模剂,特别是不能使用有机硅油脱模剂。若非用不可,也只能用滑石粉或肥皂水。
 - (4) 注塑温度一般在 255℃~275℃为宜。
 - (5)模具温度一般在45℃~95℃为宜。
 - (6) 注塑压力要低, 注塑速度要慢。
 - (四)塑料零件的内应力的检查和处理

1. 冰醋酸浸渍法

将零件完全浸入 24℃±3℃的冰醋酸中 30s, 取出后立即清洗, 然后晾干检查表面, 若有细小致密的裂纹, 说明此处有应力存在。裂纹越多, 应力越大, 重复上述操作, 在冰醋酸中浸 2min, 再检查零件, 若有深入塑料的裂纹, 说明此处有很高的内应力。裂纹越严重, 内应力越大。

2. 溶剂浸渍法

将零件完全浸入 21 \mathbb{C} \pm 1 \mathbb{C} 的 1: 1 的甲乙酮和丙酮的混合溶剂中 15s,取出后立即甩干,依上法检查。有应力的零件应在 60 \mathbb{C} \sim 75 \mathbb{C} 的温度下加热 2h \sim 4h 以清除应力。也可在 25% (体积)的丙酮中浸泡 30min 去除应力。

(五)ABS 塑料零件电镀工艺 1. 除油

ABS 塑料零件的除油工艺规范,列于表 5—4—1。应根据塑料的变形温度及除油液的性质具体选择,防止塑料变形或溶解。

含量/g・L-1 配 方 工艺规范	1	2	3	4	含量/g·L-1 配 方工艺规范	1	2	3	4
氢氧化钠(NaOH)	20 ~ 30	80	80	30	洗衣粉		5mL/L	5mL/L	
碳酸钠(Na ₂ CO ₃)	30 ~40	15	15		十二烷基磺酸钠			92	1
磷酸钠(Na ₃ PO ₄)	20 ~ 30	30	30	30	温度/℃	50 ~ 55	70 ~ 75	40 ~ 50	50 ~ 55
焦磷酸钾(K ₄ P ₂ O ₇)				30	时间/min	30	3 ~ 5		10
OP乳化剂	1 ~ 3								

表 5-4-1 ABS 塑料除油工艺规范

2. 粗化

粗化的目的是提高零件表面的亲水性和形成适当的粗糙度,以保证镀层有良好的附着力。

粗化方法有机械粗化、溶剂溶胀粗化、化学粗化。应根据零件的尺寸、形状、数量、塑料的物理化

学性质和零件的用途等,确定选用某种或几种粗化方法。

(1) 机械粗化。机械粗化是用滚磨、喷砂或砂纸打磨等方法去除塑料零件的毛边、分型 线条和浇口等,并使塑料表面粗糙,增加表面积,从而提高金属镀层的结合力。

滚磨粗化一般适合于小型零件。滚磨质量和磨料材质、磨料粒度、滚桶转速、磨料与零件装载的比例、滚磨时间等工艺参数有关。

喷砂一般适于大零件。喷砂质量和砂粒种类、砂粒尺寸、风压、水压、喷嘴直径、喷嘴 到零件的距离等工艺参数有关。

对于上述的两种方法都不允许使用时,可以采用砂纸打磨。无论哪一种机械粗化方法,

必须保证机械粗化后的零件不能变形,同时其最后尺寸应在允许的公差范围内。

(2)化学粗化。化学粗化是用化学浸蚀剂使塑料表面粗糙,增加表面积和生成某些极性基团,使表面由憎水性变成亲水性。化学粗化是目前广泛应用的一种方法。对不同的塑料应采用不同的化学粗化溶液及工艺规范。ABS 塑料化学粗化工艺规范,列于表 5—4—2。

表 5-4-2 ABS 塑料化学粗化工艺规范

含量/g·L-1 配 方	高铬	高铬酸型		高硫酸型		含磷酸型	
工艺规范	1	2	3	4	5	6	
络酐(CrO ₃)	400 ~ 430	250 ~ 350	20 ~ 30	10 ~ 20	9		
重铬酸钾(K ₂ Cr ₂ O ₇)					→	30	
硫酸(H ₂ SO ₄)	330 ~ 405	600(325mL/L)	1000 (543 mL/L)	1104 ~ 1288	957 (520	877 (282	
(d = 1.84)	(180mL/L ~			(600mL/L~	mL/L)	mL/L)	
	220mL/L)			700mL/L)			
磷酸(H ₃ PO ₄)					238	282	
(85%)/mL·L ⁻¹							
温度/℃	60 ~ 70	60 ~ 70	60 ~ 70	60 ~ 70	60 ~ 70	60 ~ 70	
时间/min	10 ~ 30	15 ~ 30	30 ~ 60	30 ~ 60	30 ~ 60	30 ~ 60	

高铬酸型粗化液应用较广。这种溶液粗化速度快,效果较好。粗化温度越高,粗化时间越短。低于 60℃时,粗化速度很慢。

3. 中和、还原或浸酸

为将在化学粗化过程中残留于零件表面的六价铬清洗干净,需在以下溶液中进行处理:

- (1) 在 10% 氨水中进行中和;
- (2)在5%~10%氢氧化钠溶液中进行中和;
- (3) 在亚硫酸钠 1%~5%溶液中进行还原:
- (4) 在水合肼(N₂H₄•H₂O) 2mL / L~10mL / L, 盐酸 10mL / L~15mL / L 溶液中进行还原;
- (5) 在盐酸 $100mL/L\sim200mL/L$ 溶液中进行浸酸。处理条件均为室温,时间为 $1min\sim3min$ 。

4. 敏化和活化

敏化处理是使零件表面吸附一层具有还原性的金属离子,以便在随后的活化处理时,将 具有催化作用的金属由离子还原为原子。活化处理就是使零件表面形成一层具有催化活性的 金属层。

(1)离子型活化。

①敏化。作为敏化的还原性物质很多。如氯化亚锡(SnC1₂)、三氯化钛(TiC1₃)、硫酸亚锡(SnS0₄)等,目前常用的是氯化亚锡。ABS 塑料氯化亚锡敏化工艺规范,列于表 5—4—3。

表 5-4-3 ABS 塑料氯化亚锡敏化工艺规范

含量/g·L-1 配 方 工艺规范	1	2	含量/g·L-1 配 方 工艺规范	1	2
氯化亚锡 (SnCl ₂ ·2H ₂ O)	10 ~ 30	2 ~ 5	温度/℃	室温	室温
盐酸(HCl)(37%)	40mL/L ~ 50mL/L	$2mL/L \sim 5mL/L$	时间/min	3 ~ 5	3 ~ 10

配制敏化溶液必须用去离子水和试剂级化学药品。因为氯化亚锡在纯水中水解而产生白色碱或氯化亚锡(Sn(0H)C1)沉淀,所以配制敏化溶液时,必须将氯化亚锡溶于盐酸水溶液中。

敏化液在空气中长期放置会被氧化为 Sn^{+4} 而失去敏化作用,所以配制好的敏化液中应放人金属锡颗粒或锡条,以延缓 Sn^{+4} 的氧化。

敏化溶液的浓度不十分严格, 其中盐酸仅仅是为防止氯化亚锡水解, 因此, 其含量多少

对敏化效果影响不大。当敏化液浓度低时,可适当延长敏化时间。对难润湿的塑料,在敏化液中可加适量润湿剂。

②活化。常用的活化剂是一些贵金属的盐,其中尤以氯化钯、硝酸银应用最广。活化工艺规范,列于表 5—4—4。

含量/g·L ⁻¹ 配方 T.艺规范	1	2	3	4
硝酸银(AgNO ₃)	1 ~3	2 ~ 5	30 ~ 90	
氯化钯(PdCl ₂)				0.2~0.5
氨水(NH ₃ ·H ₂ O)(25%)	7 10		20 100	
/mL·L ⁻¹	7 ~ 10	6 ~ 8	20 ~ 100	
盐酸(HCl)(37%)/				3 ~ 10
mL ⋅ L ⁻¹				5 - 10
温度/℃	室温	室温	室温	室温
时间/min	3 ~ 5	5 ~ 10	0.5~5	1 ~ 5

表 5-4-4 ABS 塑料活化工艺规范

硝酸银活化液适用于化学酸铜。配制溶液要用去离子水,零件人槽前也应用去离子水清洗干净。配制时将硝酸银溶于水中,在搅拌下徐徐加入氨水,当溶液由褐色混浊状变为透明时即停止加氨水。若氨水过量太多,则活化速度太慢,影响活化效果。

硝酸银用量要适当,若浓度过低,则溶液稳定性差,寿命短;浓度过高,可能在零件表面形成过多的催化中心,使化学镀铜反应速度过快,形成不致密镀层。

氯化钯活化液对化学镀铜、镍、钴等均有催化作用,而且溶液比较稳定,所以应用较广。 使用过程中,溶液会逐渐变脏,过滤后仍可使用。

③还原。在活化处理后,为提高零件表面的催化活性并防止将活化液带人化学镀液中,需进行还原处理。对于需要化学镀铜的零件,可在 10%的甲醛溶液中浸 10s~30s,然后不清洗直接进行化学镀铜。对需要化学镀镍的零件,可在 3%的次磷酸钠溶液中浸 0.5min — 1min,然后不清洗直接进行化学镀镍。

(2) 胶体钯活化。

①活化。胶体钯活化亦称直接活化。它是把敏化和活化两道工序合并在一起进行。其工艺规范,如表 5—4—5 所列。

含量/g·L-1 配 方		1	2	3		4
T.艺规范	A 液	B液	2	,	基本液	补充液
氯化钯(PdCl ₂)	1		0.2 ~ 0.3	0.5~1.0	0. 25	1
氯化亚锡(SnCl ₂ ·H ₂ O)	2. 5	75	10 ~ 20	50	3.5~5	10
盐酸(HCl)(37%) /mL·L ⁻¹	100	200	200	330	10	80
氯化钠(NaCl)					250	150
锡酸钠(Na ₂ SnO ₃ ·3H ₂ O)		7			0.5	
尿素[CO(NH ₂) ₂]					50	50
间苯二酚(C ₆ H ₆ O ₂)					1	
水(H ₂ O)	200					
温度/℃	15	~ 40	20 ~ 40	50 ~ 60	20	~ 40
时间/min	3 ~	- 10	5 ~ 10	5 ~ 10	3 ~	- 10

表 5—4—5 胶体钯活化工艺规范

- a. 配方 1 的配制方法。将 75g 氯化亚锡在搅拌条件下溶于 200mL 盐酸中,再加入 7g 锡酸钠,搅拌得到白色的乳浊液 B 备用。再在另一容器中将 1g 氯化钯加入 100mL 盐酸和 200mL 去离子水的混合液中,加热溶解后,在 (30 ± 2) ℃下加入 2. 5g 氯化亚锡,搅拌 12min 后即制得 A 液。然后立即在搅拌下将 A 液倒人 B 液中,用去离子水稀释至 1L,得到棕色的胶体钯活化液。最后在 (60 ± 5) ℃下保温 4h~6h,以提高溶液的活性和使用寿命。
- b. 配方 2、3 的配制方法。将氯化钯溶解于盐酸中,在 (30 ± 2) ℃和搅拌下加入氯化亚锡至完全溶解,继续搅拌 12min 即制得胶体钯溶液。然后在 (60 ± 5) ℃下保温 $4h\sim 6h$,以提高溶液的活性及使用寿命。

胶体钯活化液的质量与配制方法有很大关系。若配制不当,则其活性,稳定性很差。

胶体钯活化液应经常保持亚锡离子过量和足够的酸度。为此要定期添加亚锡盐和盐酸,或添加新配制的浓缩液。此外,应避免带人六价铬;不得用空气搅拌;溶液不使用时应加盖;避免带入自来水。零件应先在含氯化亚锡 40g/L、盐酸 100mL/L 溶液中预浸后不清洗直接入槽。溶液分层时,及时加入 $10g/L\sim20g/L$ 氯化亚锡。

c. 配方 4 是用氯化钠代替盐酸,另外加入尿素和间苯二酚以延缓二价锡氧化。这类溶液的特点是活化效果好,毒性小、稳定、成本低、配制维护简便。其配制方法是将氯化钠、锡酸钠、尿素、间苯二酚依次溶于去离子水中。在另一容器中,将氯化钯溶于少量盐酸水溶液中,再加入氯化亚锡搅拌溶解后加入已配制好的氯化钠混合液中,加水至 1L,在 40 $^{\circ}$ $^{\circ}$

②解胶。胶体钯活化后的工件,其表面吸附的是以原子钯为核心的胶团。为使钯能起催化作用,需将附在钯原子周围的二价锡胶体层去除,即进行解胶处理。解胶一般是在 $35\%\sim40\%$ 下,于 $80mL/L\sim120mL/L$ 的盐酸溶液中浸 $1min\sim3min$ 即可。也可在次磷酸钠30g/L的溶液中浸 $1min\sim3min$ 。此外也可在10%硫酸溶液或5%的氢氧化钠溶液中浸 $1min\sim3min$ 进行解胶。

解胶处理后的零件表面呈均匀的浅褐色,否则应予返工。

5. 化学镀和电镀

塑料零件经前处理后即可进行化学镀铜或化学镀镍,其工艺可参阅第七篇化学镀。

塑料零件化学镀以后,表面形成一层金属膜,但很薄,不能满足使用要求,所以需要用 电镀的方法加厚金属层。根据使用要求,可采用通常的电镀工艺,电镀铜、镍、铬等金属或 合金。一般多在化学镀铜后再用酸性镀铜溶液镀一层铜,然后根据要求再镀其他金属。

对于各种不同塑料的工艺,主要差别在于前处理的粗化工序。只要与之相适应的粗化工艺,形成最佳的粗糙不平度,就能在其表面顺利进行敏化,活化和化学镀。

二、聚四氟乙烯电镀

聚四氟乙烯塑料具有极好的化学稳定性,耐酸、碱、氧化剂的浸蚀,既憎水又憎油,不易浸润,给电镀带来很多困难。因此必须选用合适的表面处理方法,才能得到满意的镀层。

1. 机械粗化

用粒度为 100^{*}、200^{*}或 400^{*}的氧化铝粉喷砂或用细砂纸打磨,再用丙酮清洗,去除残留在氟塑料表面的氧化铝粉或砂粒。

2. 萘钠处理

氟塑料经机械粗化、丙酮清洗后,干燥,在室温下浸入萘钠溶液中处理 0.5min~5min。 然后用丙酮清洗,流动水清洗。

经萘钠液处理后的氟塑料即可进行敏化、活化、化学镀和电镀,其工艺规范与 ABS 塑料基本相同。

- 3. 萘钠液的制备、废液处理
- (1)材料及用量。

金属钠 23g 四氢呋喃(无水) 1L

萘 128g

(2)配制方法。取容积为 2L 的三口烧瓶,中间口装水银封闭的搅拌器,另两个瓶口分别装氯化钙干燥管和惰性气体通入管。在三 H 烧瓶中放人 128g 萘冷却至 $6 \text{ \mathbb{C}} \sim 8 \text{ \mathbb{C}}$,加入 1L 四氢呋喃,待萘全部溶解后,通人干燥的惰性气体,温度稳定在 $5 \text{ \mathbb{C}}$,缓慢地加小块的金属钠 23g,不断搅拌,控制温度在 $15 \text{ \mathbb{C}}$ 以下,待全部溶解后 (约 2h)变成深褐色或暗绿色溶液时停止搅拌,即可使用。溶液应保存在隔绝空气的棕色瓶中,防止失效。

金属钠不可与水接触, 切割时应戴防护眼镜。

- (3) 废液处理。失效的萘钠液禁止倒入水中,可用下列方法处理:
- ①在大气中开口存放,使其自然分解成无色液体;
- ②加入大量的无水酒精分解残余的萘钠液并和多余的金属钠反应。目前市场推出 ABS 塑料直接电镀工艺。

美国安美特公司在国内首先推出了以铜置换的塑料直接电镀工艺,使传统的繁琐前处理工艺简化,缩短流程,废水处理方便等许多优点。杭州东方表面公司推出工件经胶体钯活化后,无须解胶即可,直接进行铜置换操作,流程及时间大大缩短。简介如下:

工艺处理过程及配方。

1. 除油

除油剂 SP-1 20g / L~40g / L 时问 3min~10min

温度 40℃~50℃

2. 粗化

铬酸 400g / L 温度 60℃~70% 硫酸 400g / L 时问 6min—1.5min

润湿剂 适量

3. 还原

焦亚硫酸钠 2g/L~5g/L

pH 3—4 盐酸 适量

时间 0.5min~1.5min

4. 预浸

盐酸 150mL / L~200mi1L 时间 0.5min~1 min 预浸剂 BPP-1 18mL / L~21m1 / L

5. 活化

浓盐酸 200mL/L~300mL/L

温度 30℃~45℃

活化剂 BPA~1 40mL / L — 80mL / L

时间 3min~5min

6. 铜置换

BPC-1A $70mL/L\sim120milL$

温度 50℃~60℃

BPC-18 $250M1/L \sim 350m1/L$

时间 3min~5min

pH >12

三、聚丙烯塑料的电镀

聚丙烯塑料大体可分为普通型、电镀型和导电型三类。导电型塑料电镀可按钢铁零件电镀工艺进行,但由于其导电性差,所以在电镀的初始阶段应使用低的电流密度。

普通型与电镀型聚丙烯塑料的预处理工艺是:

1. 除油

除油工艺规范见表 5—4—6。在除油过程中可取出清洗后再进行除油,以提高除油效果。

表 5-4-6 聚丙烯塑料除油工艺规范

含量/g·L-1 配 方 工艺规范	1	2	含量/g·L-1 配 方 工艺规范	1	2
氢氧化钠(NaOH) 碳酸钠(Na ₂ CO ₃)	20 ~ 30 20 ~ 30		表面活性剂 温度/℃	1 ~ 2 60 ~ 80	1 ~2 60 ~80
磷酸钠 (Na ₃ PO ₄ ·12H ₂ O)	20 ~30		时间/min	30	10 ~ 30
硫酸(H ₂ SO ₄)(98%)		500mL/L			

2. 溶胀处理

普通型聚丙烯塑料在除油后要进行溶胀处理,其工艺规范如下:

松节油 40m1/L 温度 60°C~85°C 非离子型表面活性剂 66m1/L 时间 10min~30min

3. 化学粗化

硫酸(H₂SO₄) (98%) 600mi1L 温度 70℃—80℃ 铬酐(CrO₃) 饱和 时间 10min~30min

粗化后可按 ABS 塑料进行敏化、活化等工艺处理。

对于电镀型聚丙烯塑料可完全按 ABS 塑料的电镀工艺进行,只是化学粗化温度在 70℃~80℃。

粗化后的其他工序与 ABS 塑料相同。

四、聚酰胺(尼龙)塑料的电镀

尼龙零件镀前应检查内应力。其方法是将零件浸入正庚烷中,若 5s~10s 内出现裂纹,说明内应力很大; 若浸 2min~5min 仍不出现裂纹,说明内应力很小或无应力。有应力的零件可放人冷水中加热至沸,保持 3h 后随水温降低而逐渐冷却,即可消除应力。

聚酰胺塑料的预处理工艺与 ABS 塑料基本相同,只是粗化工艺不同。不同牌号的聚酰胺塑料的化学粗化工艺规范,列于表 5—4—7。

表 5—4—7 聚酰胺塑料化学粗化工艺规范

含量/g·L-1 配 方	尼龙6	尼力	定 66	尼龙	1010
工艺规范	1	2	3	4	5
铬酐(CrO ₃)	50 ~ 70	100 ~ 120		100 ~ 120	
重铬酸钾(K ₂ Cr ₂ O ₇)			15 ~ 30	i	15 ~ 30
硫酸(H ₂ SO ₄)(98%) /mL·L ⁻¹	300	500 ~ 600	300	500 ~ 600	300
温度/℃	15 ~ 30	15 ~ 30	15 ~ 30	15 ~ 30	15 ~ 30
时间/min	0.2~0.5	0.5~1.0	0.5~1.0	1 ~2	2~4

以后各工序与 ABS 塑料相同。

五、酚醛塑料的电镀

酚醛塑料的粗化工艺规范,列于表5-4-8。

用碱性溶液处理时,易使表面层疏松而使镀层附着不良,因此应注意控制温度和时间。 用碱溶液处理后宜用热水清洗,然后在稀硝酸(130mL/L)中浸数分钟以除去残留的碱液。

粗化后的各工序与 ABS 塑料相同。

六、环氧塑料的电镀

环氧塑料的粗化工艺规范,列于表5-4-9,也可按酚醛塑料的粗化工艺进行粗化。

表 5—4—8 酚醛塑料的粗化工艺规范

含量/g·L-1 配 方	碱性液	酸性液		
工艺规范	1	2	3	
氢氧化钠(NaOH)	8			
磷酸钠 (Na ₃ PO ₄ ·12H ₂ O)	19			
海鸥洗净剂	12. 5mL/L			
硫酸(H ₂ SO ₄)(98%)		30mL/L	25mL/L	
铬酐(CrO ₃)			75	
温度/℃	30 ~45	50 ~ 60	室温	
时间/min	5 ~ 10	10 ~ 30	3 ~ 5	

表 5—4—9 环氧塑料粗化工艺规范

含量/mL·L-1 配 方 工艺规范	1	2	3
铬酐(CrO ₃)	300g/L	200g/L	28g/L
硫酸(H ₂ SO ₄)(98%)	1000	1000	600
硝酸(HNO ₃)(65%)	50		
磷酸(H ₃ PO ₄)(85%)			150
水(H ₂ O)	400	400	
温度/℃	85 ~ 90	60 ~ 70	60 ~ 70
时间/min	60	30 ~ 60	30 ~ 60

第二节玻璃和陶瓷电镀

(一)玻璃上电镀

- 1. 化学法
- (1)粗化。根据产品对粗糙度的要求,可选用喷砂或化学粗化。喷砂处理一般可选用 200 目的石英砂即可。化学粗化工艺规范,列于表 5—4—10。也可以在 200mL / L 的氢氟酸溶液中粗化。
 - (2)烘烤。玻璃经粗化后,清洗干净,再在70℃下烘烤20min。
 - (3)敏化。

氯化亚锡 (SnCl₂ • 2H₂0) 10g / L 温度 20 ℃ -40 ℃ 盐酸 (HC1) (37%) 40mL / L 时间 $3min \sim 5min$

在敏化液中加入一定量氟离子可提高镀层与基体的结合力。

- (4)敏化后的其他工序,可参阅化学镀。
- 2. 热扩散法
- (1)除油和酸洗。玻璃可先在表面活性剂除油液中浸泡,清洗干净后,再在浓硫酸 1000mL,重铬酸钾 30g 的溶液中浸渍处理 3min~5min,然后用清水洗净。
 - (2)涂银浆。

氧化银(化学纯) 90g 松节油(医用) 38mL

硼酸铅(化学纯) 1. 4g 蓖麻油(医用) 6g

松香(特级) 9g

将以上各组分均匀混合,研细,涂在玻璃表面上。

- (3) 热扩散。涂覆银浆的玻璃制品,先在 80℃~100℃温度下预烘 10min 左右,然后按 100% / h~150℃ / h 的速度缓慢升温至 200℃,保温 15min,再继续升温至 520℃,保温 30min。然后随炉冷却至室温。此时在玻璃制品表面形成一层与玻璃表面紧密结合的银层。 为保证渗银质量,可反复 2 次~3 次渗银处理。
 - (4) 电镀。渗银后的玻璃制品,可按常规电镀工艺镀其他金属。

(二)陶瓷上电镀

陶瓷上电镀,可采用渗银后再电镀的方法,其工艺规范可参阅玻璃上电镀。此外,也可以采用化学镀的方法。其工艺过程大致与塑料电镀相同,区别在于粗化。

已上釉的陶瓷,应先用 120 目~180 目石英砂喷砂后再进行化学粗化。化学粗化工艺规范见表 5—4—11。素烧陶瓷不需喷砂,可直接进行化学粗化。

含量/g·L-1 配 方 工艺规范	1	2
硫酸(H ₂ SO ₄)(98%)	55%~75%(质量)	
氢氟酸(HF)(70%)	10%~18%(质量)	3.5%~ 5.5%(体积)
氟化铵(NH ₄ F)		19g/L
水(H ₂ O)	余量	余量
温度/℃	50 ~ 70	20 ~ 30
时间/min	1~3	2 ~ 5

表 5-4-10 玻璃化学粗化工艺规范

表 5—4—11 陶瓷化学粗化工艺规范

含量/g·L-1 配 方 工艺规范	1	2	3
络酐(CrO ₃)	50g/L	70g/L	
氢氟酸(HF)(40%)	100	125	100
硫酸(H ₂ SO ₄)(98%)	100	230	
氟化铵(NH ₄ F)			40g/L
温度/℃	室温	室温	室温
时间/min	3 ~ 10	3 ~ 30	3 ~ 40

不同产地,不同批次生产的陶瓷,其化学成分可能不同,所以应经过试验选用适宜的粗 化溶液和粗化时间。

化学粗化后的陶瓷制品,必须彻底清洗干净,最好再在80℃~90℃下烘30min~60min,以除去渗入陶瓷内部的水分。其后的敏化、活化、化学镀,可参阅有关章节。

第三节石膏、木材、纸板上电镀

石膏、木材、纸板等吸水材料电镀前首先要烘干,然后进行封闭处理。根据所用的封闭 材料,选用适当的预处理工艺进行处理,然后进行电镀。

常用的封闭材料是 ABS 涂料。其配制方法是将 100g ABS 涂料溶于 500mL 三氯甲烷中即

成。用浸或喷的方法涂在石膏、木材或纸板表面,干燥后即在其表面形成一层 ABS 塑料膜。 然后就可以按 ABS 塑料的电镀方法进行电镀。

如果用导电漆或导电胶封闭,则在干燥后可直接进行电镀。

第四节鲜花、树叶电镀

经过选择的鲜花在电镀前需喷或涂 ABS 涂料以便定型。涂料层厚约 0. 1mm 左右。待涂料干燥后,鲜花表面即形成一层 ABS 塑料膜,所以就可按 ABS 塑料电镀方法进行电镀。

树叶电镀前,首先要将树叶浸入含氢氧化钠 40g/L的溶液中,在室温下保持 2min~8min进行脱叶绿素处理。然后清洗晾干、定型。定型及以后各工序,与鲜花电镀相同。