马上注册,结交更多热工坛友,更多精彩内容等着您!
您需要 登录 才可以下载或查看,没有帐号?免费注册
x
随着国家基础设施建设的发展,促进了我国运输车辆进一步向重型化趋势迈进,越来越倾向于使用大功率、重吨位的载货汽车。轮毂铸件是重型卡车关键零部件之一, 它与刹车鼓、轮辋和轮胎组成总成件,起着连接制动和车辆承载的重要作用,是汽车行驶的重要安全部件。因此,要求轮毂具有较好的综合性能,不仅具有较高的强度、韧性,还需要有较高的尺寸精度。
1 [* H" d) Y F5 ~ F9 W
根据产品的使用要求,对重卡轮毂的铸造工艺进行了改进优化,生产的轮毂铸件性能优良、成品率提高。在工艺设计优化及生产过程中,使用CAE软件进行充型凝固模拟;使用中频感应电炉熔炼合成铸铁。使用东久无箱造型线生产。 & T5 ]' W, }; [3 A5 ]8 F
1、轮毂铸件质量指标
* _# b4 [- L$ w2 C4 O( g
因重卡载重量大,轮毂铸件材质必须具有良好的综合性能,以满足用户需要,避免产品在使用过程中出现失效开裂等现象。根据使用特性,特对轮毂铸件规定其性能技术指标: 8 Z$ v8 f z( d4 K0 z& ~* @* L9 @: l. W; I
(1)机械性能:抗拉强度≥500MPa、延伸率≥10%、硬度HBW175~190;
" ~8 T8 U1 `6 s7 L
(2)金相组织:石墨球化率≥85%、珠光体15~35%、渗碳体+磷共晶<2%、其余为铁素体。 % \5 z: ^/ v/ h% |$ T' ?, E
2、化学成分优化 3 S* e6 v! `9 t7 w {) S: m) H$ A
通常,抗拉强度与延伸率是一对相互矛盾的性能指标,材料强度越高往往会造成延伸率降低。为此,考虑在增加珠光体含量以提高强度、硬度的同时而保证延伸率维持在一定高水平上,以满足产品质量指标的要求。在原材料配比和熔炼工艺上再进行优化,原材料不再使用新生铁,而使用打包废钢和球铁回炉料;炉前采用Si-Mn合金进行孕育;炉内采用增碳工艺;球化孕育处理后铁水满足C+0.23Si的值在共晶点附近。下面表1是工艺改进前后轮毂铸件的各项数据对比情况 9 D% u$ S# \9 [6 r; D
' }4 \) L+ v; w- |
3、浇注系统改进
- T" \" F$ A4 X( z6 w: ` h
原工艺设计中,浇注系统采用两个浇道分散热量,将内浇道开设在法兰壁薄处,见图1(a),以防止铸件热节处被浇口铁液加热。但生产过程中发现在下模热节处出现缩松缩孔情况,如图1(b)所示。经分析认为此处在充型时被铁水持续加热,形成热节,而此位置距冒口较远,无法补缩。改进后浇注系统见图2所示,采用单浇道并将铸件翻转180度,同时将冒口布置在铸件出现缩松缩孔处,虽然此处仍然是铁水充型通道,但冒口容易对该热节处进行补缩。并且产品翻转180度以后,法兰处热节放于下模,最先充入水,并可进行压力补缩。 - w: _4 J) D# ~, L0 I( ?$ i
9 ~1 O1 V, V# q' ?/ J$ P
4、坭芯结构改进 ) g5 r+ g- Z3 P6 h8 @* q. A/ V
轮毂铸件基本结构类似圆柱体,中间有法兰,由于内腔局部内凹,无法直接起模吊砂,需要设置坭芯,分型面设置在法兰部位。由于生产线与轮毂结构的限制,铸件内部坭芯采用人工下芯。图3为工艺改进前的坭芯结构,其质量较大,不便人工下芯并影响工作效率。改进后,设计了一种局部吊砂加环形砂芯结构工艺的新型坭芯,如图4所示。采用这种坭芯结构工艺,一方面减轻了坭芯重量,降低了坭芯成本,提高了下芯效率,另一方面还降低了坭芯高度,两头采用吊砂设计则降低了坭芯对尺寸精度的影响,提高了产品的铸造精度。 " \' H1 z) z' D* I! B6 x+ q
3 `% `3 i5 Y! x! l' t5 k
5、结论 ( I. N( }% s0 j( o/ c
(1)在轮毂铸件成分优化中,控制C+0.23Si≈4.3%,并通过炉前Si-Mn合金孕育等手段,能够稳定生产出合格的材质。
8 f7 _& v$ D3 T1 V" ^" z: p% p
(2)改进浇注系统设计,冒口移近热节,解决冒口补缩距离长所造成的缩松、缩孔缺陷。 6 i4 o7 A, j4 R: }) J1 H
(3)改进坭芯结构设计,采用环形坭芯结构和局部吊砂的工艺,提高了铸造精度,降低了铸造生产成本。 (来源:互联网) |