马上注册,结交更多热工坛友,更多精彩内容等着您!
您需要 登录 才可以下载或查看,没有帐号?免费注册
x
随着国家基础设施建设的发展,促进了我国运输车辆进一步向重型化趋势迈进,越来越倾向于使用大功率、重吨位的载货汽车。轮毂铸件是重型卡车关键零部件之一, 它与刹车鼓、轮辋和轮胎组成总成件,起着连接制动和车辆承载的重要作用,是汽车行驶的重要安全部件。因此,要求轮毂具有较好的综合性能,不仅具有较高的强度、韧性,还需要有较高的尺寸精度。
3 Q" Q! ~) Q5 t( m* ^( Y( K
根据产品的使用要求,对重卡轮毂的铸造工艺进行了改进优化,生产的轮毂铸件性能优良、成品率提高。在工艺设计优化及生产过程中,使用CAE软件进行充型凝固模拟;使用中频感应电炉熔炼合成铸铁。使用东久无箱造型线生产。
' J% f x! o6 h
1、轮毂铸件质量指标 , h4 D$ e b {- N; z. ?$ U$ [
因重卡载重量大,轮毂铸件材质必须具有良好的综合性能,以满足用户需要,避免产品在使用过程中出现失效开裂等现象。根据使用特性,特对轮毂铸件规定其性能技术指标: ; {4 `% R& P5 ?0 \! N
(1)机械性能:抗拉强度≥500MPa、延伸率≥10%、硬度HBW175~190;
1 i; u" {+ Z" r' H
(2)金相组织:石墨球化率≥85%、珠光体15~35%、渗碳体+磷共晶<2%、其余为铁素体。 9 x, Y- k5 I! q) E1 _) e. a0 W$ x
2、化学成分优化
0 y& x, X( ~' [# k$ n) P
通常,抗拉强度与延伸率是一对相互矛盾的性能指标,材料强度越高往往会造成延伸率降低。为此,考虑在增加珠光体含量以提高强度、硬度的同时而保证延伸率维持在一定高水平上,以满足产品质量指标的要求。在原材料配比和熔炼工艺上再进行优化,原材料不再使用新生铁,而使用打包废钢和球铁回炉料;炉前采用Si-Mn合金进行孕育;炉内采用增碳工艺;球化孕育处理后铁水满足C+0.23Si的值在共晶点附近。下面表1是工艺改进前后轮毂铸件的各项数据对比情况 : Y: l0 N- u3 d) N9 u. U
; {! S: A2 E4 `8 a6 d
3、浇注系统改进
! h" |8 h+ S$ b9 _+ u
原工艺设计中,浇注系统采用两个浇道分散热量,将内浇道开设在法兰壁薄处,见图1(a),以防止铸件热节处被浇口铁液加热。但生产过程中发现在下模热节处出现缩松缩孔情况,如图1(b)所示。经分析认为此处在充型时被铁水持续加热,形成热节,而此位置距冒口较远,无法补缩。改进后浇注系统见图2所示,采用单浇道并将铸件翻转180度,同时将冒口布置在铸件出现缩松缩孔处,虽然此处仍然是铁水充型通道,但冒口容易对该热节处进行补缩。并且产品翻转180度以后,法兰处热节放于下模,最先充入水,并可进行压力补缩。
1 n( Q( J: Z) \ _3 ]
3 l) q' ]' U2 A( z [7 h J
4、坭芯结构改进
2 w1 Z' w( ?2 C3 O, y2 B( w3 C
轮毂铸件基本结构类似圆柱体,中间有法兰,由于内腔局部内凹,无法直接起模吊砂,需要设置坭芯,分型面设置在法兰部位。由于生产线与轮毂结构的限制,铸件内部坭芯采用人工下芯。图3为工艺改进前的坭芯结构,其质量较大,不便人工下芯并影响工作效率。改进后,设计了一种局部吊砂加环形砂芯结构工艺的新型坭芯,如图4所示。采用这种坭芯结构工艺,一方面减轻了坭芯重量,降低了坭芯成本,提高了下芯效率,另一方面还降低了坭芯高度,两头采用吊砂设计则降低了坭芯对尺寸精度的影响,提高了产品的铸造精度。
4 l. D: R5 b5 A U1 ~
3 [. m& `" U+ x- w: T) ^% _
5、结论 9 a: E7 X6 R! G' U' P, k4 y* P
(1)在轮毂铸件成分优化中,控制C+0.23Si≈4.3%,并通过炉前Si-Mn合金孕育等手段,能够稳定生产出合格的材质。 : G, M, E. b- G4 E1 C! i% h/ Z
(2)改进浇注系统设计,冒口移近热节,解决冒口补缩距离长所造成的缩松、缩孔缺陷。 6 t: y5 U0 A$ h$ u; t
(3)改进坭芯结构设计,采用环形坭芯结构和局部吊砂的工艺,提高了铸造精度,降低了铸造生产成本。 (来源:互联网) |