纳士达 都百特 鑫工艺

热加工行业论坛

 找回密码
 免费注册

QQ登录

只需一步,快速开始


查看: 1764|回复: 0

[分享] 加热炉在不同余热回收方式下节能效果分析

[复制链接]
  • TA的每日心情
    奋斗
    2021-12-4 09:18
  • 签到天数: 158 天

    连续签到: 1 天

    [LV.7]常住居民III

    发表于 2018-7-6 15:54:59 | 显示全部楼层 |阅读模式

    马上注册,结交更多热工坛友,更多精彩内容等着您!

    您需要 登录 才可以下载或查看,没有帐号?免费注册

    x
    本文通过对轧钢加热炉烟气回收技术中换热式技术、蓄热式技术以及余热锅炉技术的发展历程回顾,以及三项余热回收技术在鞍钢轧钢加热炉领域的应用实际,综合分析轧钢加热炉采用不同余热回收方式所取得的节能效果,同时通过三种回收方式的投资、效益分析,得出不同余热回收方式在轧钢加热炉系统中的的使用条件,为加热炉节能减排提供参考依据。
    余热系统.webp.jpg
        1、前言

             轧钢加热炉是轧钢生产工序的能源消耗大户,占整个轧钢工序消耗的80%,高温烟气带走的热量占加热炉供热负荷的20~50%。如何最大限度地高效回收并利用好这部分余热资源,是工业炉节能降耗的关键技术之一。加热炉的节能方式大体分为两部分,其一为提高加热炉的效率,通过提高坯料带出热量、降低炉膛温度等方式降低煤气的负荷;其二为提高烟气的余热回收量,通过降低加热炉排烟损失的方式减少加热炉的热损失,进而降低燃料的消耗。

            现有加热炉烟气余热的主要方式有三种,其一为换热式技术,其二是蓄热式技术,其三是基于换热式技术之上的余热锅炉技术,三种方式各有利弊。本文通过某大型钢铁企业在三种余热回收方式上的尝试,研究轧钢加热炉采用不同余热回收方式取得的效果,为加热炉的节能减排提供参考依据。

        2、加热炉采用不同余热回收技术的发展历程

        2.1 换热器技术的发展历程

            换热式技术为最早出现的加热炉烟气余热利用技术,70 年代我国锻造加热炉采用整体针状、块状对流换热器;80 年代初期在火焰炉上采用管式换热器,同时对辐射换热器开展深度研究,并在80年代末期开展喷流换热器的研究。1984 年鞍钢在9 号热风炉率先应用了大型热管换热器。近年为提高换热器的效率,螺旋扁管换热器、板式换热器等高效率换热器逐渐应用于余热回收领域。

        2.2 蓄热式技术的发展历程

            蓄热式技术通过蓄热体将烟气中的余热直接回用到炉内,将空、煤气预热温度提高到900℃以上,降低加热炉的单耗。国外从18 世纪开始采用蓄热式余热回收技术,包括高炉热风炉、初轧均热炉等;到20 世纪80 年代,英国两家公司协同完成了世界上第一座陶瓷小球蓄热式加热炉;20 世纪90 年代,日本工业炉株式会社完成了世界上第一座蜂窝状蓄热体加热炉改造;国内从1997 年开始,北岛工业炉公司首次在国内完成了高炉煤气、空气双蓄热(内置式)加热炉改造;2000 年北京神雾公司率先引进、开发了蜂窝体蓄热式加热炉。之后,新一代蓄热式加热炉在我国众多中、小型钢厂普遍推广,生产能力由小到大,加热品种由单一到多样。

        2.3 余热锅炉技术的发展历程

            采用余热锅炉技术将加热炉的烟气余热通过余热锅炉转化为可用蒸汽,可以有效降低加热炉排烟温度,实现节能的目标。

            60 年代之前,我国只有少数大型工业企业在建设中引进了余热锅炉,鞍钢在“一五”期间,进口了前苏联的KY。70 年代至80 年代是我国余热锅炉快速发展时期。在有色冶金、钢铁、建材、轻工、石油化工等行业相继出现了我国自行开发的余热锅炉产品。1988 年至今,我国余热锅炉的发展进入了一个新阶段,新产品开发速度减缓,产品开发的技术难度提高、领域拓宽。国内自行开发了干熄焦余热锅炉、燃气一蒸汽联合循环余热锅炉、城市生活垃圾焚烧锅炉等,掌握了制作工艺要求较高的产品,如大型炼钢转炉余热锅炉部件等的制作技术。

            加热炉的余热锅炉技术作为该项技术的分支,在60 年代就有应用,但随着换热器技术的逐渐成熟,该技术被取代,现有余热锅炉技术指在换热器后进一步回收烟气余热的二次回收技术。

        3、鞍钢应用余热回收技术的历程

            鞍钢作为大型联合钢铁企业,具有从选矿到冷轧工艺的全部生产流程,因此具备齐备的能源动力条件,有独立的高炉煤气、焦炉煤气、转炉煤气系统,同时具备高、焦混合煤气及高、焦、转炉煤气混合加压系统。其中50%的高炉煤气被高炉自用,用于热风炉燃烧,5~10%的高炉煤气供给CCPP发电机组,其余高炉煤气进入混合煤气系统用于燃烧。焦炉煤气全部用于混合燃烧。转炉煤气少量用于耐火生产工艺,大部分用于混合燃烧。因此混合煤气的燃烧是鞍钢供热生产的主流。

           鞍钢现有多条轧钢生产线,具有大型步进式加热炉20 余台,其中绝大部分采用加压混合煤气为燃料,采用常规加热方式,即均热段+加热段+预热段的燃烧方式,余热利用采用空、煤气双预热方式回收烟气热量。常规换热器的热效率在30%左右,空气换热器温度效率不高于50%。

            2009 年鞍钢在一炼钢连轧作业区进行蓄热式燃烧技术的初次尝试,应用高炉煤气为燃料进行双蓄热燃烧方式的加热炉改造。加热炉的单耗有所降低,氧化烧损降低了10%左右,但在三年的运行中发现,加热炉仍存在着较多的问题,加热炉炉压不能有效控制,冒火严重,加热炉产量受冷装料加热的限制,不能满足生产需求,全炉冷装加热时间达8h 以上。加热炉的维护量大,“节能不节钱”。2012 年对该座加热炉进行改造,增加辅助烟道控制炉压,并采用长寿蓄热体、分腔式烧嘴等结构方式,简化加热炉的控制点,减少加热炉的维护量。通过这些技术的应用,加热炉的单耗大幅降低,生产统计单耗达0.8GJ/t,与同期生产的加热炉相比低20%。
            2010 年鞍钢在2150 生产线开展加热炉烟气余热发电技术的尝试。针对该厂排烟温度高的问题,首先进行换热器技术改造,增加换热面积,同时减少出炉烟气的掺冷风量,提高进换热器烟气温度100℃,经过改造后空气预热温度从350℃提高到450℃,煤气预热温度由220℃提高到300℃,排烟温度也由450℃降低至370℃。之后针对370℃的烟气进行余热锅炉技术改造,小时产气量30t,蒸汽温度330℃,蒸汽压力1.1MPa,产生蒸汽并入鞍钢蒸汽管网,同时加热炉的排烟温度降至170℃。实现了加热炉的综合节能。

    4、三种余热回收技术的比较

            综合以上三种技术在鞍钢的应用实际,分析三种烟气余热利用方式的节能效果。由于鞍钢采用蓄热式技术、余热锅炉技术、换热技术的加热炉规格、型号、产量存在较大差异,因此均将其折算为吨钢节能效益进行比较分析。

        4.1 蓄热式技术的应用效益计算

        4.1.1 效益计算

            鞍钢采用蓄热结构形式加热炉,提高空煤气预热温度,降低燃料消耗,改造前统计单耗为1.24GJ/t,改造后统计单耗0.88GJ/t,年产量64.57 万吨。采用折标煤的方式计算吨钢节约煤气产生的经济效益,其吨标煤单价按1040 元计算(下同)。

        (1.24-0.88)×106/7000/4.18×1040/1000=12.79 元/t

        4.1.2 工程投资、维护以及消耗

            进行蓄热式加热炉改造的费用为1150 万元/座左右,使用寿命10 年,则加热炉年折旧费用115万元左右。备件费年增加100 万元,维修费用每年增加30 万元,能源消耗增加10 万元,则年增加维护费用255 万元,年产量64.57 万吨。折合吨钢产品的消耗为3.95 元/t。进而计算改造蓄热式加热炉产生的效益为12.79-3.95=8.84 元/t。

        4.2.2 工程投资、维护以及消耗

             原2150 线轧钢加热炉换热器投资费用为空气换热器114 万元/台,煤气换热器30 万元/台,通过计算采用高温换热器后换热面积提高近一倍,则投资费用提高至288 万元/台,换热器使用寿命在5年左右,则年折旧费用增加28.8 万元/台,耗电增加50%,费用增加10 万元,全厂折合吨钢消耗0.23元/t。

        实际吨钢节能效益为:8.18-0.23=7.95 元/t。

        4.3 余热锅炉技术应用效益计算

        4.3.1 效益计算

            通过2150 线加热炉应用余热锅炉技术的数据分析来看,加热炉的平均进口烟气温度为467℃,排烟温度为160℃,产生平均蒸汽30t/h,蒸汽压力平均1.1MPa,平均过热蒸汽温度330℃。计算过热蒸汽热含量为H’=3072.3kJ/kg,则小时蒸汽热焓为H=91.47GJ/h。鞍钢余热蒸汽的内部价格为34 元/GJ,则小时蒸汽效益为3109.08 元/h。按年生产7200 小时计算,年效益2239 万元/年,折合吨钢效益为5.33 元/t。

            通过换热器改造加热炉空气预热温度达到450℃,煤气预热温度达到300℃,加热炉生产单耗由原1.24 GJ/t 降低至1.14 GJ/t。则换热技术实现经济效益为:

        (1.24-1.14)×106/7000/4.18×1040/1000=3.55 元/t

        实际改造效益为:5.33+3.55=8.88 元/t

        4.3.2 工程投资、维护以及消耗

           通过对加热炉烟气余热利用系统进行分析,其耗能种类主要是软水、环水、电、蒸汽四种能源介质。其中软水作为锅炉用水产生蒸汽,是主要的消耗资源,环水作为泵与风机的冷却水,消耗量不大,电主要维持水泵、冷却风机、引风机等设备的运行,蒸汽主要用于除氧机,同时冬季少量设备供暖。消耗合计785 万元/年。项目投资2300 万元,使用寿命为10 年,年折旧费为230 万元,增加维护费用55 万元/年。合计吨钢消耗:2.55 元/t

            实际节能效益=8.88-2.55=6.33 元/t。

        5、结论

           (1)通过比较结果来看,加热炉采用蓄热式技术,充分回收烟气中的热量,同时不增加其他能源损失,有利于加热炉的烟气余热回收。同时采用蓄热式技术可以有效的解决低热值煤气的燃烧问题,实现煤气资源优化利用,煤气按品质实现梯级利用,企业效益最大化。但蓄热式的运行成本、人工成本偏高,关键设备的长寿化是进一步研究的方向。

            (2)采用高效换热器技术,生产稳定,运行后基本没有消耗,运行周期长,人工消耗成本低,适用于大工业生产,如何在不提高生产成本条件下,提高换热器的效率是进一步研究的方向。

           (3)余热锅炉技术作为现有换热技术的补充,可以有效回收加热炉的余热,但其附属设备较多,同时消耗较大,多次能源的转换,造成其效率的降低,经济效益并不十分显著。
    您需要登录后才可以回帖 登录 | 免费注册

    本版积分规则

    QQ|手机版|Archiver|热加工行业论坛 ( 苏ICP备18061189号-1|豫公网安备 41142602000010号 )
    版权所有:南京热之梦信息技术有限公司

    GMT+8, 2024-4-20 16:43 , Processed in 0.277435 second(s), 25 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2020, Tencent Cloud.

    快速回复 返回顶部 返回列表