纳士达 都百特 鑫工艺

热加工行业论坛

 找回密码
 免费注册

QQ登录

只需一步,快速开始


查看: 2478|回复: 7

真空密封造型 vacuum cast

[复制链接]
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

    发表于 2009-2-27 18:58:54 | 显示全部楼层 |阅读模式

    马上注册,结交更多热工坛友,更多精彩内容等着您!

    您需要 登录 才可以下载或查看,没有帐号?免费注册

    x
    一、工艺过程、原理及特点:

    1.制造带有抽气箱和抽气孔模板。
    2.将烘烤呈塑性状态的塑料薄膜覆盖在型板上、真空泵抽气使薄膜密贴在型板上成型。

    3.将带有过滤抽气管的砂箱放在已覆好塑料薄膜的模板上。
    4.向砂箱内充填没有粘结剂与附加物的干石英砂,借微震使砂紧实,刮平,放上密封薄膜、打开阀门抽去型砂内空气,使铸型内外存在压力差(约300~400mmHg)。由于压力差的作用使铸型成型并具有较高的硬度,湿型硬度计读数可达95左右。

    5.解除模板内的真空,然后进行拔模。铸型要继续抽真空直到浇注的铸件凝固为止。依上法制下型
    6.下芯、合箱、浇注。

    7.待金属凝固后,停止对铸型抽气,型内压力接近大气压时,铸型就自行溃散。
    Key:(关键词)
    (1)铸型内外压力差:保证强度,型腔的轮廓。
    (2)真空造芯:用抽气箱芯盒代替模板,并在芯盒覆盖膜后、加砂前,通过芯头在芯盒内适当位置内放入过滤抽气管即可。过滤抽气管可作芯骨。

    Advantage:(优点)

    提高铸件质量:表面光洁、轮廓清晰、尺寸准确。用较细干砂,铸型硬度高且均匀,拔模容易。
    简化设备、节约投资、减少运行各维修费用。省去有关粘合剂、附加物及混砂设备。旧砂回用率在95%以上。设备投资减少30%。设备动力为湿型的60%。劳动力减少35%。
    模具及砂箱使用寿命长。
    金属利用率高。V法造型中,金属活动性较好,充填能力强,可以铸出3mm的薄壁件。铸型硬度高、冷却慢;利用补缩,减少冒口的尺寸。工艺出品率提高,减少了加工余量。

    Shortage:(缺点)

    造型操作复杂,小铸件生产率不易提高。
    从始至终需抽真空,实现机械化有困难。
    因塑料薄膜的延伸性和成型性的限制,影响该工艺方法扩大应用范围。
    粉尘问题及砂子冷却。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 18:59:16 | 显示全部楼层

    铸造应力的产生和防止

    1、铸造应力
            铸造应力按产生的原因不同,主要可分为热应力、收缩应力两种。

    (1)热应力  
        铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力,称热应力。热应力使冷却较慢的厚壁处受拉伸,冷却较快的薄壁处或表面受压缩,铸件的壁厚差别愈大合金的线收缩率或弹性模量愈大,热应力愈大。定向凝固时,由于铸件各部分冷却速度不一致,产生的热应力较大,铸件易出现变形和裂纹。

    (2)收缩应力
        铸件在固态收缩时,因受铸型、型芯、浇冒口等外力的阻碍而产生的应力称收缩应力。、一般铸件冷却到弹性状态后,收缩受阻都会产生收缩应力。收缩应力常表现为拉
    应力。形成原因一经消除(如铸件落砂或去除浇口后)收缩应力也随之消之,因此收缩应力是一种临时应力。但在落砂前,如果铸件的收缩应力和热应力共同作用其瞬间应力大于铸件的抗拉强度时,铸件会产生裂纹。

    2、减小和消除铸造应力的措施
      (1)合理地设计铸件的结构
        铸件的形状愈复杂,各部分壁厚相差愈大,冷却时温度愈不均匀,铸造应力愈大。因此,在设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。
       (2)采用同时凝固的工艺
        所谓同时凝固是指采取一些工艺措施,使铸件各部分温差很小,几乎同时进行凝固。因各部分温差小,不易产生热应力和热裂,铸件变形小。设法改善铸型、型芯的退让性,合理设置浇冒口等。同时凝固的示意图,该工艺是在工件厚壁处加冷铁,冒口设薄壁处。   
       (3)时效处理是消除铸造应力的有效措施。
        时效分自然时效、热时效和共振时效等。所谓自然时效,是将铸件置于露天场地半年以上,让其内应力消除。热时效(人工时效)又称去应力退火,是将铸件加热到550-650℃,保温2-4h,随炉冷却至150-200T,然后出炉。共振法是将铸件在其共振频

    率下震动10-60ndn,以消除铸件中的残留应力。
    3、铸件的变形与防止
      如前所述,在热应力的作用下,铸件薄的部分受压应力,厚的部分受拉应力,但铸件总是力图通过变形来减缓其内应力。因此,铸件常发生不同程度的变形。铸件的变形往往使铸件精度降低,严重时可以使铸件报废,应予防止。因铸件变形是由铸造应力引起,减小和防止铸造应力的办法,是防止铸件变形的有效措施。



    4、铸件的裂纹与防止
      当铸造内应力超过金属的强度极限时,铸件便产生裂纹。裂纹是严重的铸造缺陷,必须设法防止。裂纹按形成的温度范围分为热裂和冷裂两种。
      (1) 热裂
        ① 热裂的产生
        一般是在凝固末期,金属处于固相线附近的高温时形成的。其形状特征是裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色。铸件结构不合理,合金收缩大,型(芯)砂退让性差以及铸造工艺不合理等均可引发热裂。钢和铁中的硫、磷降低了钢和铁的韧性,使热裂倾向增大。
        ② 热裂的防止
        合理地调整合金成分(严格控制钢和铁中的硫、磷含量),合理地设计铸件结构,采用同时凝固的原则和改善型(芯)砂的退让性,都是防止热裂的有效措施。
      (2) 冷裂
        ① 冷裂的产生
        冷裂是铸件冷却到低温处于弹性状态时所产生的热应力和收缩应力的总和,如果大于该温度下合金的强度,则产生冷裂。冷裂是在较低温度下形成的,其裂缝细小,呈连续直线状,缝内干净,有时呈轻微氧化色。壁厚差别大、形状复杂的铸件,尤其是大而薄的铸件易于发生冷裂。
        ② 冷裂的防止
        凡是减小铸造内应力或降低合金脆性的措施,都能防止冷裂的形成。例如:钢和铸铁中的磷能显著降低合金的冲击韧性,增加脆性,容易产生冷裂倾向,因此在金属熔炼中必须严格加以限制。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 19:00:01 | 显示全部楼层

    铸造行业现状及常见缺陷修补方法

    、铸造行业的现状分析(成品率,修补的比率)


      我国的铸造工业的生产规模,铸件的产量品种,都已经处于世界前列。雄厚的工业基础为众多行业提供了大量的铸件(毛坯和零件)。

        改革开放以来,我国开始进出口铸件。近年来,我国铸件出口增长较快,已占铸件总产量的10%以上,创汇稳步增加,出口产品也由简单件进展到要求较高的形状复杂的铸件。我国的铸造工业虽已进入到厂点多、产量大、门类齐全的世界铸造大国行列,但与美、日、德、法等铸造强国相比,还有相当的差距。我国铸造生产必须走优质、高效、低耗、清洁的可持续发展道路,才能迅速由大变强。

      长期以来,我国铸造业存在废品率较高的现象。我国普通铸铁件的废品率约为7%左右,复杂件、高档件在10%到15%左右,铝合金压铸件在8%到10%左右。缺陷主要集中在铸件表面或内部出现的气孔、砂眼等。其中80%左右的缺陷都是可以通过修复来挽救的。导致缺陷原因很多,在工艺安排、材料选择、铸造模具设计与制作、浇注成型等过程中,如果不能科学和严谨的设计与执行,都将导致废品率的出现和提高。

        随着国家政策的调整,我国铸造业铸件由低附加值产品向中、高档铸件发展。铸件的修复效益已经越来越被企业看重。各企业在挽救缺陷铸件方面因各自情况往往采取不同的方式。



    二、修补情况及设备分析


      铸工胶水:简单,粗放的铸件,一般修补处不需要后续加工,且没有特殊的强度硬度要求。这类铸件附加值比较低。

      焊补:90%以上的铸造厂家都选择焊补来解决生产中遇到的铸造缺陷。焊补修复因采用了金属填充料(焊材一般与铸件材质相匹配),焊补处性能基本可以达到母材的标准,且操作简单,焊补效率高,受到许多厂家的认可和信赖。目前市场上,焊机种类比较多,应用在缺陷修复上,大体有以下几种:

      电焊机:铸铁、铸钢件焊补多采用的传统方式。

         优点:修复大缺陷,效率高。

         缺点:焊后焊点上硬度过高,内部有应力,容易产生裂纹,一般还需要退火热处理才可以满足加工要求。且因焊接条件限制,内部容易产生气孔、夹渣等二次缺陷。

      氩弧焊:精密铸件(合金钢,不锈钢精铸件),铝合金压铸件多采用氩弧焊机焊补。部分模具制造和修复厂家,也采用该焊机修复模具缺陷。

         优点:焊补效率高,精度较电焊机高。焊丝种类较多,不锈钢、铝合金产品上应用最广。可用于焊接,强度教高。

         缺点:用于缺陷修复,小缺陷修复时(气孔、砂眼),因冲击过大,熔池边线有痕迹。焊补钢件有硬点。由于热影响,焊补有色铸件或薄壁件时,易产生热变形。操作技术要求较高。

      冷焊机:是21世纪初新诞生的修复技术,因焊补过程中工件产生热量极小,被成为冷焊机。经过几年的发展,焊机应用方向和技术都得到了很大的发展,已经在修复市场占有很大的份额。

    按照修补产品分类有:贴片机和电火花堆焊修复机。

      贴片机:采用瞬间高频放电原理将焊片(0.05-0.20mm)粘贴到工件表面,每次粘贴厚度最大等同与焊片厚度,焊接质量取决于放电是否均匀。适合于工件磨损,加工超差修复,在模具市场具有一定影响力。该机器也可以将焊粉(或加工废削),填充到缺陷处(如砂眼),经放电后修复。修复后的工件色差小。缺点是修补的速度较慢。


      冷焊机,共同的缺点是,焊补效率不如电焊机和氩弧焊机高,但在修复毫米级缺陷和加工面缺陷时,其突出的优势使人们更青睐于选择冷焊机。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 19:01:54 | 显示全部楼层

    铸铁的熔炼方法及其特点

    铸铁是含碳量大于2.11或者组织中具有共晶组织的铁碳合金。工业上所用的铸铁,实际上都不是简单的铁一碳二元合金,而是以铁、碳、硅为主要元素的多元合金。铸铁的成分范围大致为:C2.4-4.0%,Si0.6-3.0%,Mn0.2-1.2%,P 0.1-1.2%,S 0.08-0.15%。有时还加入各种合金元素,以便获得具有各种性能的合金铸铁。
        根据碳在铸铁中存在的形态不同,通常可将铸铁分为白口铸铁、灰口铸铁及麻口铸铁。而灰铸铁中又可根据石墨的形态不同而分为普通灰铸铁,蠕虫状石黑铸铁,球黑铸铁以及可锻铸铁。

    1 灰铸铁

        灰铸铁通常是指具有片状石墨的灰口铸铁,这中铸铁具有一定的机械性能、良好的铸造性能以及其它多方面的优良性能,因而在机械制造中业获得最广泛的应用。
        表1为灰铸铁的新的国家标准。该标准是以灰铸铁的抗拉强度作为分级依据的。由于灰铸铁对冷却速率的敏感性(壁厚效应),同一种牌号铸铁在不同铸件壁厚条件下的实际强度有很大的差别(薄壁与厚壁之间在强度上的差别达50-80MPa)。
    表1  灰铸铁分级
    牌号 抗拉强度 MPa (kg/mm2)
    HT 100 ≥100 (10.2)
    HT 150 ≥150 (15.3)
    HT 200 ≥200 (20.4)
    HT 250 ≥250 (25.5)
    HT 300 ≥300 (30.6)
    HT 350 ≥350 (35.7)

    2 球墨铸铁及蠕墨铸铁

        球墨铸铁和蠕墨铸铁一般是用稀土镁合金对铁液进行处理,以改善石墨形态,从而得到比灰铸铁有更高机械性能的铸铁。
        球墨铸铁依照其基体和性能特点而分为六种:即铁素体(高韧性)球墨铸铁,珠光体(高强度)球墨铸铁,贝氏体(耐磨)球墨铸铁,奥氏体一贝氏体(耐磨)球墨铸铁,马氏体一奥氏体(抗磨)球墨铸铁及奥氏体(耐热、耐蚀)球墨铸铁。
        蠕墨铸铁具有不同比例的珠光体—铁素体基体组织。铸铁性能与其石墨的蠕化程度(蠕化率)及基体有关。在石墨蠕化良好条件下,珠光体蠕墨铸铁的强度和硬度较高,耐磨性强。适于制造耐磨零件,如汽车的刹车鼓等。而铁素体蠕墨铸铁的导热性较好,在高温作用下,不存在珠光体分解问题,组织较稳定,适用于制造在高温下工作、需要有良好的抗热疲劳能力、导热性的零件,如内燃机汽缸盖、进排气岐管等。
    3 可锻铸铁

        可锻铸铁是将白口铸铁通过固态石墨化热处理(包括有或无脱碳过程)得到的具有团絮状石墨的铁碳合金。采用不同的热处理方法,可以得到具有不同组织和性能的可锻铸铁,即黑心可锻铸铁、珠光体可锻铸铁和白心可锻铸铁。
        当将白口铸铁毛坯件在密封的退火炉中进行热处理,即在中性炉气条件下退火时,得到的铸铁组织中有呈团絮状的石墨(退火碳)存在。这种石墨虽不很圆整和紧密,但它对基体的割裂作用则比灰铸铁中的片状石墨要小得多,因此它能使铸铁得到较高的强度及良好的韧性。铸铁的基体可以通过热处理来加以控制。使之成为铁素体或珠光体。用这种方法得到的铁素体基体可锻铸铁因组织中有石墨存在,因而铸铁的断面呈暗灰色,而在表层经常有薄的脱碳层呈浅灰色,故通称为黑心可锻铸铁。而珠光体可锻铸铁则是以其基体命名的。
        当将白口铸铁毛坯件在氧化性质的炉气条件下进行退火时,铸件断面上从外层到心部,发生强烈的氧化和脱碳。在完全脱碳层中无石墨存在,铸铁的组织为铸素体。实际上,在小断面尺寸条件下,铸铁的组织基本上为单一的铁素体和退火碳。而在大断面尺寸条件下,表层为铁素体,中间区域为珠光体和铁素体及退火碳,而心部区域则为珠光体及退火碳(间或有少量铁素体)。这种铸铁断面由于其心部区域有发亮的光泽,而表层色泽较暗,故通称为白心可锻铸铁。
    4 特种铸铁

        特种铸铁是指具有特殊使用性能的铸铁材料,主要包括抗磨铸铁、耐热铸铁和耐腐蚀铸铁。为了使铸铁具有这些特殊使用性能,需要使铸铁有一定的组织。特种铸铁中既有非合金铸铁(例如普通白口抗磨铸铁),也有低合金铸铁、中合金铸铁和高合金铸铁(如中锰抗磨用球墨铸铁及高铬抗磨用白口铸铁等)。
        对任何一种特种铸铁而言,首先是要求具备一定的使用性能,如抗磨、耐热等。但由于是用来制造机器零件,就需要保证有一定的机械性能,主要是强度和塑性,为此需要在铸铁的化学成分设计上,考虑同时满足特定的使用性能和一定的机械性能这两方面的要求。
        由于特种铸铁中含有大量合金元素,使得其在熔炼和铸造性能方面,与非合金化的铸铁有显著的差别。大多数合金元素降低铸铁的铸造性能,而含有大量合金元素的特种铸铁的铸造性能通常是很差的,在铸造过程中容易产生多种铸造缺陷,因此需要针对各种铸铁在熔炼和铸造方面的特性,采取适当的工艺措施,防止缺陷的发生,以保证铸件的质量。
    5 铸铁的熔炼

    9.1 熔炼对保证铸件质量的重要性
        熔炼铁液是生产铸铁件的重要环节。铸件质量包括内在质量、外观质量以及是否形成缺陷等,这些都与铁液方面因素有直接的关系。如铁液的流动性、薄壁和结构复杂铸件的成型性以及冷隔缺陷等受铁液温度的影响,而熔炼的铁液化学成分是否符合要求,则对铸件的机械性能有直接的影响。铁液中的气体和非金属夹杂物含量不仅影响铸铁的强度和铸件的致密度,而且还与铸件形成气孔、裂纹等缺陷有关。随着机械制造科学的发展,对铸铁提出薄壁、高强度的要求,铸件的最小壁厚由过去4~6mm减小至2~3mm,这要求相应提高铁液浇注温度。铁液温度还对铸铁件的内在质量有重要的影响,如灰铸铁件的质量指标(GZ),即与铁液温度有显明的关系。在球墨铸铁生产方面,熔炼出铁液的温度及原始含硫量成为球化及孕育处理有否成功的先决条件。
    9.2 对铁液质量的基本要求
        1.出炉温度
        不同牌号灰铸铁件的浇注温度范围大致为1330-14100C。在一般情况下,铁液的出炉温度至少比浇注温度提高500C,故根据铸铁牌号(自HT100至HT350)和铸件结构条件的具体情况,铁液出炉温度应不低于1380-14600C。当需要浇注特薄(2-4mm)铸件时,出炉温度还应提高20-300C。为了满足浇注铸件的需要,不同牌号可锻铸铁的出炉温度应不低于1460-14800C。对球墨铸铁及其它变质处理的铸铁,在其球化一孕育处理过程中铁液的温度会有显著的下降,为了补偿铁液的温度损失,需相应提高铁液的出炉温度。
        2.化学成分
        熔炼得到的铁液化学成分需要满足铸件的规格要求。
        用冲天炉熔炼时,配料计算是保证铁水化学成分合乎要求的首要环节。即根据铁水化学成分的要求,考虑冲天炉在熔炼过程中元素的变化和炉料的实际情况,计算出各种金属炉料的配合比例。
        各种牌号铸铁要求的化学成分随铸件壁厚和铸造方法而异。例如,HT20-40铸铁的化学成分范围为:C3.3-3.5%、Si1.5-2.0%、Mn0.5-0.8%、S<0.12%、P<0.25%。用于配置HT20-40的金属料平均成分如表2。
    表2 配置HT20-40的金属料平均成分
    炉料名称 化学成分 %
    C Si Mn P S
    Z15生铁 4.19 1.56 0.76 0.04 0.036
    回炉料 3.28 1.88 0.66 0.07 0.098
    废钢 0.15 0.35 0.50 0.05 0.05

    所用铁合金为含硅45%硅铁,含锰75%的锰铁。
        熔炼过程中元素的变化为:Si –15%、Mn –20%、S +50%。
        其配料计算如下:
       (1)计算炉料中各元素的变化
          a) 炉料含碳量:  C铁水% = 1.8% + 0.5 C炉料%
           已知铁水所需的平均含碳量为3.4%,按上式算得 C炉料%=3.2%;
          b) 炉料含硅量: 已知铁水所需的平均含硅量1.75%,硅的熔炼烧损为15%,则
                   Si炉料=1.75/(1-0.15)=2.06%;
          c) 炉料含锰量  已知Mn铁水=0.65%,熔炼烧损20%,故Mn炉料=0.65/(1-0.20)=0.81%;
          d) 炉料含硫量  已知S铁水=0.12%,增硫50%,则:S炉料=0.12/(1+0.5)=0.08%;
          e) 炉料含磷量  磷在熔炼过程中变化不大,P炉料=P铁水<0.25%
          综合上列计算结果,所需配置的炉料平均化学成分为:
                 C炉料3.2%、Si炉料2.06%、Mn炉料0.81%、S炉料<0.08%、P炉料<0.25%
       (2)初步确定炉料配比
          a) 回炉料的配比:主要取决于废品率和成品率,它随具体生产情况而变化。此处取20%。
          b) 新生铁和废钢配比:设新生铁为χ%,则废钢为80%-χ%。按炉料所需含碳量为3.2%,新生铁、废钢、
          回炉料的含碳量各为4.19%、0.15%、3.28%,可列出下式:
              4.19χ+0.15(80-χ)+3.28´20=3.2´100
          得出χ=60.0%。故铁料配比为:Z15生铁60%、废钢20%、回炉料20%。
       (3)然后按上述配比及各种炉料的成分,计算配合后的炉料成分如表3。
              表3 炉料成分
    炉料名称 配比% C% Si% Mn% S% P%
    成分 数量 成分 数量 成分 数量 成分 数量 成分 数量
    Z15生铁 60 4.19 2.51 1.56 0.94 0.76 0.46 0.036 0.022 0.04 0.024
    回炉料 20 3.28 0.66 1.88 0.38 0.66 0.13 0.098 0.020 0.07 0.014
    废钢 20 0.15 0.03 0.35 0.07 0.50 0.10 0.050 0.010 0.05 0.010
    合计 100  3.20  1.39  0.69  0.052  0.048
    要求成分   3.20  2.06  0.81  <0.08  <0.25
    差额   0.00  0.67  0.12  合格  合格

       (4)计算铁合金加入量
        a) 硅铁加入量  今缺硅量0.67%,亦即每100公斤炉料需加硅0.67公斤。所用硅铁含硅量为45%,故每100公斤炉料需加硅铁量为0.67/0.45=1.5公斤
        b) 锰铁加入量  同上法计算,每100公斤炉料需加入含锰75%的锰铁为:0.12/0.75=0.16公斤。
       (5)制定配料单
    根据配比和层铁量,确定每批炉料中各种炉料的重量,写出配料单。设已知层铁500公斤,可算得每批铁料的组成为:生铁 :500´60%=300公斤、废钢:500´20%=100公斤、回炉料:500´20%=100公斤、45%硅铁:500´1.5%=7.5公斤、75%锰铁:500´0.16%=0.8公斤。
        3.有害成分
        铸铁熔炼过程中,必须将有害的元素成分(磷、硫以及其它干扰铸铁正常结晶和组织控制的微量元素等),控制在限量以下。
        1)脱硫  冲天炉熔炼中铁液中硫的来源,一是炉料中固有的硫,二是从焦碳中吸收的硫。酸性冲天炉不具有脱硫能力,碱性冲天炉能在一定程度上起到脱硫的作用。
        炉渣碱度在一定范围内提高时,有利于降低铁液含硫量;温度提高时,铁液在熔炼过程中增硫量减少;炉气氧化性强时,渣中FeO含量增高,不利于脱硫反应的进行。适当提高焦铁比,减小送风强度,有利于脱硫。但当生产球墨铸铁件时,除了用热风冲天炉进行炉内脱硫外,还常采用炉外脱硫的措施。炉外脱硫的基本要点是尽量扩大脱硫剂与铁液之间的接触面积,以加强脱硫效果。常用方法有:利用电石脱硫的摇动包脱硫法、喷射脱硫法、机械脱硫法、机械搅拌脱硫法和多空塞脱硫法等。
        2)脱磷  磷对铸铁的机械性能,特别是对球墨铸铁和可锻铸铁的韧性有害,因此要严格控制铸铁的含磷量。冲天炉熔炼的脱磷能力很弱。因此对铁液的含磷量只能通过配料来控制。应采用一定比例的低磷生铁和废钢进行配料。
        4.铁液纯净,含有的渣、气体、夹杂物量少。
        为了将冲天炉熔炼中形成的夹杂物从铁液中去除,常在熔炼过程中按照炉料重量,加入一定量的石灰石CaCO3 作为溶剂。石灰石在高温下分解,与泥沙、灰分等化合形成低熔点的复杂化合物——熔渣。熔渣易于与铁液分离便于去除。当熔渣粘度高时,可加入一些萤石(CaF2),以降低炉渣熔点。
    9.3 铸铁的熔炼方法及其特点
        熔炼铸铁的方法依照所用的熔炉设备而分为冲天炉熔炼,感应电炉熔炼,电孤炉熔炼,反射炉熔炼,以及由某些方法的联合,如冲天炉一电孤炉、冲天炉一感应电炉双联法等。
        1.冲天炉熔炼法
        (1)冲天炉构造 冲天炉的基本构造示如图1。炉身、风箱及烟道等用钢板焊成。炉身内部通常砌以耐火砖层,以便抵御焦碳燃烧产生的高温作用。为了储存铁液,多数冲天炉都配有前炉。
        (2)冲天炉熔炼原理 在熔炼过程中,炉身的下部装满焦碳,称为底焦。在底焦的上面交替装有一批批的铁料(生铁、废钢、回炉料、铁合金等)、焦碳及熔剂(石灰石、萤石等)。通过鼓风,使底焦强烈燃烧,产生的高温炉气沿炉身高度方向上升,使其上面一层铁料熔化。
        (3)冲天炉熔炼的优缺点及其应用 冲天炉是最普遍应用的铸铁熔炼设备。它用焦炭作燃料,焦炭燃烧产生的热量直接用来熔化炉料和提高铁液温度,在能量消耗方面比电孤炉和其它熔炉节省。而且设备比较简单,大小工厂皆可采用。但冲天炉也存在一定的缺点,主要是由于铁液直接与焦炭接触,故在熔炼过程中会发生铁液增碳和增硫的过程。
        采用了冲天炉一电孤炉双联熔炼法或冲天炉一感应电炉双联熔炼法,以充分利用冲天炉熔化效率较高、电孤炉和感应电炉对铁液过热能力强及化学成分控制容易的优点。



    图1 冲天炉结构简图
        2.感应电炉熔炼
        (1)感应电炉构造及工作原理 感应电炉是利用电流感应产生热量来加热和熔化铁料的熔炉。炉子的构造分为有芯式(图2)和无芯式两种,在无芯式感应电炉中,坩埚内的铁料在交变磁场的作用下产生感应电流,并因此产生热量,而将其自身熔化和使铁液过程热。在有芯式感应电炉中,需要加入用其它熔炉(如冲天炉)熔化的铁液,在环形铁芯内产生的交变磁场使沟槽内的铁液过程,并利用沟槽中铁液与其上面熔池中的铁液循环作用而加热全部铁液。无芯式感应电炉具有熔化固体炉料的能力,而有芯感应电炉只能过热已熔化的铁液,但在过热铁液的电能消耗方面,则以有芯感应电炉更为节省。


    图2 有芯感应电炉炉体部分构造图
    1—感应线圈 2—轭铁 3—耐火材料 4—铁液 5—熔渣
        (2)感应电炉熔炼的优缺点及其应用 与冲天炉熔炼相比,感应电炉熔炼的优点是熔炼过程中不会有增碳和增硫现象,而且熔炼过程可以造渣覆盖铁液,在一定程度上能防止铁液中硅、锰及合金元素的氧化,并减少铁液从炉气中吸收气体,从而使铁液比较纯净。这种熔炼方法的缺点是电能耗费大。
        感应电炉适用于熔炼高质量灰铸铁、合金铸铁、球墨铸铁及蠕墨铸铁等。无芯感应电炉能够直接熔化固体炉料,而且开炉及停炉比较方便,适合于间断性生产条件。有芯感应电炉开炉及停炉不便,适合于连续性生产。这种炉子熔化固体炉料的热效率低,而对过热铁液的热效率高,故适于与冲天炉配合使用。目前这两种形式的感应电炉在铸铁生产上都得到应用。
        3.电弧炉熔炼
        (1)电弧炉构造及工作原理 电弧炉熔炼是利用石墨电极与铁料(铁液)之间产生电弧所发生的热量来熔化铁料和使铁液进行过热的。生产上普遍使用的是三相电弧炉,其炉体部分的构造示于图6。在电弧炉熔炼过程中,当铁料熔清后,进一步地提高温度及调整化学成分的冶炼操作是在熔渣覆盖铁液的条件下进行。电弧炉依照炉渣和炉衬耐火材料的性质而分为酸性和碱性两种。碱性电弧炉具有脱硫和脱磷的能力。
        (2)弧炉熔炼的优缺点及其应用 电弧炉熔炼的优点是熔化固体炉料的能力强,而且铁液是在熔渣覆盖条件下进行过热和调整化学成分的,故在一定程度上能避免铁液吸气和元素的氧化。这为熔炼低碳铸铁和合金铸铁创造了良好的条件。电弧炉的缺点是耗电能多,从熔化的角度看不如冲天炉经济,故铸铁生产上常采用冲天一电弧炉双联法熔炼。由于碱性电弧炉衬耐急冷急热性差,在间歇式熔炼条件下,炉衬寿命短,导致熔炼成本高,故多采用酸性电弧炉与冲天炉相配合。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 19:02:38 | 显示全部楼层

    球墨铸铁的性能及应用

    美国尼伯科是美国最大的额定压力球墨铸铁阀门制造商。美国尼伯科多转阀门非常适用于许多应用领域:烃类,化学制品,船舶,消防防火,纸浆和造纸等行业中可以安装铸铁或铸钢阀门的地方。
        作为钢的替代品,1949年人类开发了球墨铸铁。铸钢含碳量少于0.3%,而铸铁和球墨铸铁含炭量量则至少为3%。铸钢中的低含碳量使得作为游离石墨存在的碳不会形成结构薄片。铸铁内的碳天然形式是游离石墨薄片形式。在球墨铸铁内,这种石墨薄片通过特殊的处理方法变化成微小的球体。这种改进后的球体使得使得球墨铸铁比铸铁和钢相比具有更加优异的物理性能。正是这种碳的球状微观结构,使得球墨铸铁具有更加良好的展延性和抗冲击性,而铸铁内部的薄片形式导致铸铁没有展延性。通过铁素体基体可获得最佳的展延性,因此,所有美国尼伯科球墨铸铁的压力负载部件都经过铁素体化退火周期的工艺处理。球墨铸铁内部的球状结构也能够消除铸铁内部的薄片石墨容易产生的裂缝现象。在球墨铸铁的微观照片中,可以看见裂缝游行到石墨球后终止。在球墨铸铁行业内,这些石墨球称为“裂缝终结者”,因为它们具有阻止断裂的能力。
        有时,球墨铸铁被称为“两个世界里最好的”金属,意思是球墨铸铁具有铸钢的强度,也有铸铁优异的抗腐蚀性。
        球墨铸铁与铸铁(灰铸铁)的比较


        与铸铁相比,球墨铸铁在强度方面具有绝对的优势。球墨铸铁的抗拉强度是60k,而铸铁的抗拉强度只有31k。球墨铸铁的屈服强度是40k,而铸铁并没有显示出屈服强度,并且最终出现断裂。球墨铸铁的强度-成本比远远优于铸铁。(请参阅83页有关机械性能的全面比较)。球墨铸铁在耐腐蚀性方面与铸铁相同。
        球墨铸铁与铸钢的比较


        球墨铸铁的强度和铸钢的强度是可比的。球墨铸铁具有更高的屈服强度,其屈服强度最低为40k,而铸钢的屈服强度只有36k。(请参阅83页有关机械性能的全面比较)。在大部分市政应用领域,如:水、盐水、蒸汽等,球墨铸铁的耐腐蚀性和抗氧化性都超过铸钢。由于球墨铸铁的球状石墨微观结构,在减弱振动能力方面,球墨铸铁优于铸钢,因此更加有利于降低应力。选择球墨铸铁的一个重要的原因在于球墨铸铁比铸钢成本低。球墨铸铁的低成本使得这种材料更加受欢迎,铸造效率更高,也较少了球墨铸铁的机加工成本。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 19:03:23 | 显示全部楼层

    我国铸铁铸造技术的回顾及展望

    1 铸铁熔炼技术
    1.1 冲天炉技术
    冲天炉仍稳居铸铁熔炼设备之首,至今仍担负着80%,以上重量的铸铁件的熔炼任务。建国50多年来, 我国的冲天炉技术得到了快速的发展。在早期,我国铸造行业沿用原苏联的直筒形三排大风口冷风冲天炉,经过多年来的生产实践,结合我国具体情况,改进和创造了多种冲天炉炉型,如曲线炉膛多排小风口热风冲天炉,倒置大排距两排风口冲天炉,中央送风冲天炉排交叉风口冲天炉,旋转进风冲天炉,卡腰冲天炉,无炉衬水冷冲天炉等。其它特种炉和煤粉化铁炉,天然气化铁炉,国内也有过研究和应用,但使用还不普遍。尤其20世纪70年代以后,符合我国特点的炉型和熔炼技术已逐渐完善和成熟,形成了独具我国特色的多排小风口和两排大间距冲天炉系列。在操作技术上,从一度追求低焦耗到重视铁水质量,进而讲求提高技术经济、劳动卫生和环境保护的综合指标,逐步正确地开发应用了从炉料处理、修炉、烘炉到配加料、鼓风、炉况控制、铁检验等全过程的操作技术。国外铸铁件生产中,熔炼时普遍采用铸造用焦,热风冲天炉和双联熔炼应用普遍,冲天炉富氧送风、除湿送风已得到应用,铁液温度高于1500度。国内铸铁件生产中,熔炼时铸造焦应用比例不足1%,热风炉和双联熔炼应用很少,富氧和除湿送风已经开始研究,出炉铁液温度大多为1400度左右。在比较短的历程中,我们在冲天炉理论研究、炉子结构、修炉材料、送风系统、热能利用、强化底焦燃烧、炉内气氛调整控制、铁水炉前检验、消烟除尘、非焦炭化铁、配料及熔炼过程计算机优化控制等诸多方面都取得了可喜的成绩。冲天炉技术的进步是我国铸造业实现现代化的重要方面。50多年来,我们已经走出了一条独具特色的冲天炉技术发展的成功之路,在我国的具体条件下发展了冲天炉理论和生产实践。冲天炉熔炼的质量和效益与生产规模及炉子容量有密切的关系。从产业结构方面看,我国的相关企业追求小而全、大而全的生产结构,致使国内至今冲天炉林立,其中3t/h以下的小型冲天炉占大多数,由此而造成的资源浪费和环境污染已是不容忽视的问题。随着我国企业股份制和集团化的发展,将为专业化铸造厂的发展提供必要条件,但从我国多种所有制长期并存的经济结构来看,铸造厂大、中、小规模长期并存的格局也是必然的。5t/h以下中小型冲天炉还将长期占有大多数比例。因此,以提高操作技术为主,开发、推广低能耗、少污染的冲天炉及其熔炼工艺是我国冲天炉发展的总趋势。冲天炉的发展是围绕着提高性能、提高生产率、降低消耗、改善操作、减少污染进行的。冲天炉性能主要体现在碳的燃烧、炉料的加热和冶金过程三方面。随着铸铁生产批量的扩大和对铸造生产率及铸件质量要求的提高,冲天炉容量也不断地增大。大容量的冲天炉熔炼状况更稳定,无论技术上还是经济上都比小炉子更具优势。因此,在单一品种大批量生产中,用一台大容量炉子取代多台小炉子是合理的。在国际上,冲天炉最新发展主要为等离子体冲天炉、无焦冲天炉、新型回转熔炼炉我国铸铁业布局分散、企业规模小,生产的社会化水平低,技术水平不等,技术成果的生产转化率低。而冲天炉作为其基础工艺设施,更是集中体现了这些特点,大量低水平运行的小冲天炉造成的环境污染、资源浪费和低质铸件是不言而喻的。在操作技术方面,由于长期以来自动化程度低,人工操作技术得以深入的发展。炉子的熔炼状态对操作者的依赖很大,致使冲天炉的熔炼水平差别很大, 甚至同一台炉子也会因为操作人员状态的变化和更换操作者,而出现熔炼水平的波动。实现冲天炉操作的智能化、自动化才能从根本上避免操作者的随机不良影响,使冲天炉按最佳状态稳定运行。我国冲天炉自动化研究起步虽晚,但进展较快,在自动优化配料、上料、熔炼过程优化控制方面取得了一些实用成果,使我国冲天炉的自动化操作水平提高了一大步,缩短了与世界先进水平的差距。加入WTO将在我们面前展现一个竞争激烈的世界铸件市场。我们不但要保持铸铁件生产大国的地位,还要成为铸铁件生产的强国。因此,冲天炉熔炼的发展将围绕强化管理、促进技术改造、提高规模效益进行。我国冲天炉技术的发展方向主要有以下若干方面:
    (1)走专业化生产道路,提高冲天炉作业率,向大型化、智能化、长期作业方向发展;
    (2)炉料供应专业化、规模化;
    (3)大力发展冲天炉配套技术,同时加强对冲天炉的控制和检测;
    (4)发展冲天炉.电炉双联熔炼技术;
    (5)获得高温优质铁水是冲天炉熔炼的根本任务。
    1.2 电炉技术
    感应电炉熔炼铸铁,由于它具有铁液温度高、成分稳定、污染少、便于调整铁液成分的优点,从20 世纪60年代初起,在一些工业发达国家开始普及。近年来,中频感应熔炼炉的迅速发展给铸铁生产注入了新的活力。感应熔炼炉的发展和应用,使铸铁生产进入一个新阶段。尽管工频感应熔炼炉存在某些不足,但它在金属熔炼、铁液成分调整、金属液的升温和保温,尤其作为其它熔炼炉的双联用炉仍在普遍应用。中频感应熔炼炉适合熔炼铸铁,特别是合金铸铁、球墨铸铁和蠕墨铸铁,它的迅速发展和所显示的优越性,使其近年来在铸铁生产中呈现出被广泛应用的新趋势。它节能降耗、生产率高,且具有较大的生产灵活性,对钢铁冶金企业等行业性机修厂及其它单件小批量生产极为有利;它自动化程度高,且配有双供电电源与控制系统,同时具有熔炼和保温双重功能,对于诸如汽车铸件和铸铁管生产的连续性作业非常适合;它既适用于冷料熔炼,又适宜与其它熔炼炉进行双联,具有广阔的应用前景。



    2 铸铁合金
    2.1 铸铁合金概述
    目前,世界铸铁件的生产状况和趋势是,灰铸铁件的比例明显下降,但仍占优势。球铁铸件的产量持续增长,蠕铁和特种铸铁也有了较大发展。灰铸铁的全球产量趋向于逐年下降,但灰铸铁中的高强度铸铁所占的比重越来越大,广泛用于制造汽车、拖拉机、农业机械、机床和通用机械等各个方面。我国灰铸铁约占铸铁件总产量的80%以上,而高强度灰铸铁的比重较小。如国内柴油机缸体铸件比国外重30%以上,且抗拉强度在碳当量相同的情况下比国外低1-2级。在碳当量相同的条件下,我国生产的灰铸铁的拉伸性能比发达国家低1-2个牌号。今后,加强高强度灰铸铁的试验研究无疑应是我国灰铸铁的发展方向。我国可锻铸铁总产量在世界上名列前茅,虽然我国可锻铸铁产量较大,但今后的需求量还将有所增大。所以,今后我国可锻铸铁还将有一个大的发展。
    目前,我国可锻铸铁的生产与国外相比,主要有以下差距。a品种少,仅有黑心可锻铸铁。国外珠光体可锻铸铁生产得很多,且有焊接性能良好的白心可锻铸铁。b质量差。国外多以电炉或冲天炉*电炉双联熔炼为主,且有先进的炉前控制与测试技术。而国内以小型冲天炉为主,且对原材料检验控制不严,炉前都凭经验,先进的测试设备很少,这些都是产品质量不稳定的重要原因。c镀锌工艺落后。d缺少耗能低、保温性好、污染小的理想退火炉。以上差距都有待赶上,以使我国可锻铸铁能向更高的水平发展。在铸铁产量缩减的情况下,球铁在铸铁件中所占的比例依然在增大。20世纪50年代,世界球铁产量还很少,1960年也只有50万吨,1970年猛增至500万吨,到1980年已到760万吨。在西方发达国家, 通常用球铁件取代部分灰铸铁件和可锻铸球件。我国球铁铸件产量比较低,占铸铁件的比例远小于西方发达国家。此外,我国球铁铸件在质量和生产稳定性方面的差距也较大。目前我国球墨铸铁生产较突出的问题是材质强韧性差、缺陷多。其原因除炉料、球化处理方法和球化剂等因素外,主要是球化处理前对铁液含硫量要求过松。发达国家的球铁生产时,当采用冲天炉或电炉与冲天炉双联熔炼时,炉外脱硫是必不可少的,使原铁液含硫量达到≤0.001%的水平,这样极大地降低了球化处理时球化剂的消耗及铸铁件中硫化物夹杂的含量。为使我国球铁生产能有大幅度的增长,必须大力推动实施能稳定提供质量可靠的优质球铁件的配套技术。国内外在蠕化工艺和蠕化剂的研究方面都达到了很高的水平,所研制的蠕化剂种类繁多,可达近百种。我国稀土资源丰富。现在,在生产中应用的蠕化剂主要是稀土硅铁镁合金、稀土硅钙合金和稀土镁钛合金。国内外现有的蠕化处理工艺主要有冲入法、随流法、气动法、型内法等。蠕墨铸铁已用于大量生产,建有生产线(用感应电炉熔化),质量基本稳定。我国在稳定生产蠕铁方面也取得了一定的经验,尤其在汽缸盖和排气管方面。国内通常用冲天炉熔化,原铁液质量差,虽用稀土镁球化剂以保证铸件质量,但材质动态力学性能和伸长率较国外水平低。当前,影响国内蠕铁发展的关键问题仍然是生产稳定性问题, 这又主要表现为熔炼、处理等技术水平和生产管理水平有待提高上。随着现代化工业的发展,对具有特殊性能的材料的需求量不断增长,而我国特种铸铁(抗磨、耐蚀和耐热铸铁)的发展速度较缓慢,技术水平和国外差距较大。为了适应新形势下国民经济发展的需要,特种铸铁的研究今后将成为我国铸铁发展的一个重要方向。
    2.2 铸铁合金的发展
    2.2.1 高强化、薄壁化是我国灰铸铁的发展方向。
    我国高强度灰铸铁件与国外相比,主要差距是强度低、耐磨性差、寿命低、断面敏感性大、加工性差。高强度灰铸铁的着眼点是提高碳当量,在保证良好的铸造性能的同时获得高的强度。但为获得强度高、性能稳定和品质均一的铸铁件,又必须严格控制碳当量,并从熔炼、检测等方面来予以保证。目前国外对高强度灰铸铁的生产,除作常规检测外,还提出了十项新的检验指标,即铁水温度、铁水纯净度、共晶团数、共晶度、相对硬度、相对强度、品质因数、弹性模数、过冷度、过冷度比。其中,共晶度一般在0.8-1.0左右较好;相对强度为1.15-1.20时,铸铁的性能最理想;相对硬度在0.8-1.0时,切削性能良好。品质因数愈高,材质愈好。过冷度一般控制在,6-8度之间,这时孕育效果最佳;过冷度比通常控制在1.5-2.5之间;弹性模数之值愈大,铸铁抗拉强度愈大;共晶团愈细,铸铁的强度愈高。通过对上述指标的严格控制可达到稳定的质量。我国高强度灰铸铁研究的重点是:a提高铁液温度,改善铸铁冶金质量,采用合成铸铁熔炼工艺;b 加强孕育处理技术,尤其是强化孕育铸铁的研究和推广;c研究和推广低合金化孕育铸铁;d调整化学成分、控制铸铁的Si/C比,以获得高强度低应力铸铁。国内的实践表明,若使Si/c比值在0.5-0.9,再加以适当的孕育和合金化,可获得具有良好综合力学性能的高强灰铸铁。另外,调整Mn,Si含量,使含Mn量比含Si量高0.2%-1.3%或以上,可以得到另一种高强度低应力铸铁。目前,我国的工厂大多无炉前快速测定C,Si含量的仪器,因而不能及时掌握C,Si的变化情况C,Si含量波动很大,致使铸件质量难以稳定,这是今后急需解决的一个问题。铸铁薄壁化、轻量化、强韧化是为了满足工程界对工程材料节能性、回用性两方面的要求,适应“人类可持续发展战略”的需要。对汽车工业而言,降低整车自重对节能、减少废气排放有关键性的意义。铸件的“薄壁高强”化正在工程界成为一种趋势,其技术应用也将日益成熟并迅速拓展,在可以预见的将
    来,3-5mm的高强薄壁球铁件将会大量出现在一般机电产品中。所谓“薄壁高强”,即生产中所指壁厚为4-6mm(国外为3.0-3.5mm),抗拉强度大于250MPa。而国内目前大多数工厂发动机仍使用HT200牌号材质标准。就材质而论,其主要原因是大多数工厂采用冲天炉熔炼,铁液指标达不到要求, 特别是铁液温度低和化学成分波动大,使该类产品铸件难以控制,从而导致废品率高。其中属于材质方面的主要是性能达不到高牌号要求,断面均匀性差,渗漏严重,热疲劳性能差。我国在“六五”至“八五” 期间,经过科研院所、大专院校与生产厂家的联合攻关,对高强薄壁铸铁件的研究取得了较大进展,缩短了与国外先进水平的差距。与国外同类产品相比,在铸件的使用性能和品质稳定性方面,还存在着不小的差距。如在材料耐磨性方面,国外汽车一般第一次大修里程,汽油机为30万km,柴油机大于50万km。而国内分别是10-15万km和25万km。汽缸套使用寿命国外可达到6000-8000h,而国内只有 3000-5000h。由于耐磨性与材料的综合性能密切相关,为满足发动机不断强化的要求,改善缸体的组织与性能和研究缸体新材料与新工艺,提高缸体耐磨性和使用寿命,已成为当前国内外学者和工程技术人员研究的重点之一。

    2.2.2发展球铁新品种、采用新的球铁生产工艺
    (1) 加强薄壁和大断面铸态球铁技术的开发和应用。要保证铸件的力学强度和切削加工等性能不致因壁厚减小而降低,其基本途径就是使球墨铸铁的力学性能得到改善。最重要的两个方面,一是白口化倾向的减低和抑制,二是石墨组织的改善。球化剂的合理选用和稀土(RE)元素的加入是实现高强度薄壁球铁铸造的关键。该技术的核心是在铸造(熔炼)工艺中要保证RE/S=2-2.5。球化剂要选用Fe-Si-Mg-RE-Ca系材料,其中稀土元素(Ce.La.Pr)的加入并使之与硫保持一定比例是球化技术关键,同时严格控制P≤0.04%-0.06%,Be=0.003%-0.007%。实验证实,当Mg/S≥5时,易生成白口;而RE/S≤2(时,出现球化不良;RE/S≥2.5时,也易出现白口。故在一般情况下要求硫含量越低越好的铸铁,此时(薄壁状态)为了一定的球化率、晶粒细化和减少白口,则必须保持一定比例的硫含量。此点对于以废钢(S较少)为主要原料的熔炼厂应特别予以注意。
    (2) 继续开发和应用奥-贝球铁。奥-贝球铁是近几十年来铸铁冶金研究的重大成就之一,它是迄今为止具有最好综合性能的一种球铁,尤其是高的弯曲疲劳性能和良好的耐磨性,因而获得广泛的注目和开发应用。奥贝球铁的基体组织由板状或针状铁素体25%-50%的稳定残余奥氏体和碳化物组成,有时有少量的马氏体存在,一般通过850-900度奥氏体化后在300-450度等温淬火来获得,其常规化学成分与通常的铁素体或珠光体球铁一样。采用等温淬火来获得奥-贝球铁,其热处理费用高,难以普及,且因残余奥氏体向马氏体转变这一加工硬化现象使得加工困难。国外出现了中断热落砂法、中断正火法等新的生产奥-贝球铁工艺,这些生产工艺成本低、能耗少,且可行,因而具有研究和推广的实际意义。
    (3) 发展奥氏体球铁。奥氏体球铁在石油、化工、海洋与船舶、仪器仪表、食品、动力与冷冻、以及核工程等许多领域都具有广阔的应用前景,因而成为近年来球铁领域中的一个新的研究重点。尽管目前产量还不大,但有些国家却发展很快,尤其德国的产量每年以10%的速度递增,并且,一种以GGG-NiGrNb20-2为牌号的可焊接奥氏体球铁已在德国问世,其化学成分(%)为:C≤3.0,Si1.5-2.6,Mn0.5-1.5,P≤0.4,Nb0.1-0.2,Ni18-22,Gr1.2-2.5,
    Mg0.08。瑞士Sulzer研制的新型Ni-Mn奥氏体球铁在-196度下仍具有很好的冲击韧性, 最近又出现了15%Ni-5%Mn,20%Ni-4%Mn系的经济性很好、低温用奥氏体球铁。GGG-NiMn137牌号也开始用于制造热核反应堆外壳承重结构、核潜艇高压壳体等。我国镍的贮量占世界第一位,而奥氏体球铁的研究还是一个弱点,因此有待开发,尤其是高Ni奥氏体球铁。
    (4) 采用新的球铁生产工艺。
    在熔炼方面,最好采用感应电炉或冲天炉-电炉双联熔炼,特别是冲天炉—炉外脱硫—电炉保温的工艺流程能为制取球铁提供优质的高温低硫原铁液。在球化处理方面,现在国内外已有的方法达8种以上,国外广泛采用GF转包法和包盖法,我国也正在推广使用。在孕育方面,孕育剂的选择应在一定的铸件冷却速度下使球化—孕育有一个最佳的搭配。孕育方法以瞬时孕育为佳,近十多年来,国内外已发展了五六种新的瞬时孕育工艺。此外,近年来发展的铁液过滤净化技术也已得到推广应用,成为提高球铁质量的一种很好的措施。
    2.2.3 发展孕育技术
    孕育推动了高强度灰铸铁的发展,并使球墨铸铁、蠕墨铸铁的生产更趋完美。凡是经过孕育处理的铸铁,都具有石墨细化、组织均匀和壁厚敏感性小的特点。随着工业的发展,势必有大量废钢要利用,电炉熔炼在铸铁熔炼中的地位日益突出。在该种熔炼、炉料条件下,孕育更是必不可少。孕育处理已经成为生产优质铸铁产品的一种重要手段。在现代铸铁的生产中,灰铸铁以及球墨铸铁孕育处理的重要性正越来越受到人们的重视,而且这种情况肯定还会继续下去。过去,对孕育的发展往往寄希望于新的孕育剂,这无疑是必要的。但近年来,孕育方法的改进,特别

    是迟后孕育,受到了人们的重视。因此,今后在发展孕育剂的同时,对孕育问题的注意力可能转向发展新的孕育方法。另外,必须在铁液质量、铁液成分、炉料组成、孕育技术、炉前快速检验与控制等环节采取措施,克服铸造性能、白口倾向、力学性能以及希望高碳当量之间的矛盾。
    2.2.4发展合金铸铁
    合金化是提高铸铁性能的重要手段之一,随着生产日益发展,铸铁合金化或微合金化必将发挥重要的作用。必须结合当地资源不断开拓合金铸铁新品种, 利用先进手段不断加深对现用合金铸铁的认识。
    2.2.5发展铸铁件表面强化技术
    对于特殊应用场合,往往希望铸件表层具有特殊的性能。传统铸件的整体强化导致零件整体铸造时工艺性能恶化、生产过程复杂、废品率增加和合金元素浪费,并且增加了成本,从而限制了铸铁材质优点的发挥。铸铁件表面层激光强化处理和铸件表面合金化技术可以在普通铸件表面形成冶金结合的合金层,使铸件具有复合性能,以适应于特殊的应用场合。上述技术已经逐步用于耐磨零件的生产,取得了明显的成效。总之,上述铸铁技术不是孤立的,加强铸铁复合化技术的研究和应用,以系统工程的观点采取综合措施,是获得优质、高强铸件的根本保证。在此基础上,加强质量管理、采用先进的检测手段、提高铸件的尺寸精度和表面质量也是必不可少的环节。
    3 未来的发展方向新世纪的到来给我国铸造业带来了大好的发展机遇和严峻的挑战。同样,铸铁业在积极采用高新技术改造传统产业,充分挖掘铸铁材料的巨大潜能等方面必将紧跟时代的步伐,预计未来在以下若干方面将得到发展。
    (1)以机床工业、能源工业、核能工业、石化工业及海洋工程为主要目标,以重、高、大、难为特点,开展重大技术装备、铸造技术的基础理论研究。发展数值模拟、物理模拟及专家系统,使铸铁技术由“经验”走向“定量”。
    (2)以汽车工业,航空航天及核能工业为主要目标,以强韧化、轻量化、精密化、高效化为特点,开展铸铁新材料、新工艺的研究。
    (3)为提高产品质量和生产率,增强我国工业产品在国际市场上的竞争能力,开展铸造过程自动化、柔性生产单元和系统及集成制造技术的研究。
    (4)激励开展有潜在应用前景的铸铁技术应用基础理论的研究。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 19:05:22 | 显示全部楼层

    铸铁的热处理

    铸铁生产除适当地选择优学成分以得到~定的组织外,热处理也是进一步调整和改进基体组织以提高铸铁性能的一种重要途径。铸铁的热处理和钢的热处埋有相同之处 ,也有不同之处。铸铁的热处理一般不能改善原始组织中石墨的形态和分布状况。对灰口铸铁来说,由于片状石墨所引起的应力集中效应是对铸铁性能起主导作用的困素,因此对灰口铸铁施以热处理的强化效果远不如钢和球铁那样显著。故友口铸铁热处理工艺主要为退火、正火等。对于球铁来说,由于石墨呈球状,对基体的割裂作用大大减轻,通过热处理可使基作组织充分发挥作用,从而可以显著改善球性的机械性能。 故球铁像钢一样,其热处理工艺有退火、正火、调质、多温淬火、感应加热淬火和表面化学热处理等。

        铸铁的热处理工艺:

        1.消除应力退火

        由于铸件壁厚不均匀,在加热,冷却及相变过程中,会产生效应力和组织应力。另外大型零件在机加工之后其内部也易残存应力,所有这些内应力都必须消除。去应力退火通常的加热温度为500~550℃保温时间为2~8h,然后炉冷(灰口铁)或空冷(球铁)。采用这种工艺可消除 铸件内应力的90~95%,但铸铁组织不发生变化。若温度超过550℃或保温时间过长,反而会引起石墨化,使铸件强度和硬度降低。

        2.消除铸件白口的高温石墨化退火

        铸件冷却时,表层及薄截面处,往往产生白口。白口组织硬而脆、加工性能差、易剥落。因此必须采用退火(或正火)的方法消除白口组织。退火工艺为:加热到550-950℃保温2~5 h,随后炉冷到500—550℃再出炉空冷。在高温保温期间 ,游高渗碳体和共晶渗碳体分解为石墨和A,在随后护冷过程中二次渗碳体和共析渗碳体也分解,发生石墨化过程。由于渗碳体的分解,导致硬度下降,从而提高了切削加工性。

        3.球铁的正火

        球铁正火的目的是为了获得珠光体基体组织,并细化晶粒,均匀组织,以提高铸件的机械性能。有时正火也是球铁表面淬火在组织上的准备、正 火分高温正火和低温正火。高温正火温度一般不超过950~980℃,低温正火一般加热到共折温度区间820~860℃。正火之后一般还需进行四人处理,以消除正火时产生的内应力。

        4.球铁的淬火及回火

        为了提高球铁的机械性能,一般铸件加热到Afc1以上30~50℃(Afc1代表加热时A形成终了温度) ,保温后淬入油中,得到马氏体组织。为了适当降低淬火后的残余应力,一般淬火后应进行回火,低温回火组织为回火马氏作加残留贝氏体再加球状石墨。这种组织耐磨性好 ,用于要求高耐磨性,高强度的零件。中温回火温度为350—500℃回火后组织为回火屈氏体加球状石墨,适用于要求耐磨性好、具有一定效稳定性和弹性的厚件。高温 回火温度为500—60D℃,回火后组织为回火索氏作加球状石墨,具有韧性和强度结合良好的综合性能,因此在生产中广泛应用。

        5.球铁的多温淬火

        球铁经等温淬火后可以获得高强度,同时兼有较好的塑性和韧性。多温淬火加热温度的选择主要考虑使原始组织全部A化、不残留F,同时也避免A晶粒长大。加热温度一般采用Afc1以上30~50℃,等温处理温度为0~350℃以保证获得具有综合机械性能的下贝氏体组织。稀土镁铝球铁等 温淬火后σb=1200~1400MPa,αk=3~3.6J/cm2,HRC=47~51。但应注意等温淬火后再加一道回火工序。     

        6.表面淬火

        为了提高某些铸件的表面硬度、耐磨性及疲劳强度,可采用表面淬火。灰铸铁及球铁铸件均可进行表面淬火。一般采用高(中) 频感应加热表面淬火和电接触表面淬火。

        7.化学热处理

        对于要求表面耐磨或抗氧化、耐腐蚀的铸件,可以采用类似于钢的化学热处理工艺,如气体软氯化、氯化、渗硼、渗硫等处理。
  • TA的每日心情
    难过
    2022-5-21 10:29
  • 签到天数: 9 天

    连续签到: 1 天

    [LV.3]偶尔看看II

     楼主| 发表于 2009-2-27 19:06:06 | 显示全部楼层

    铸造有色合金的熔炼

    铸造铝合金


    铝合金的性能及应用

        铸造铝合金的密度比铸铁和铸钢小,而比强度则较高。因此在承受同样载荷条件下采用铝合金铸件,可以减轻结构的重量,故在航空工业及动力机械和运输机械制造中,铝合金铸件得到广泛的应用。
        铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如内燃机的汽缸盖和活塞等,也适于用铝合金来制造。
        铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660.230C,铝合金的浇注温度一般约在730~750oC左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的内在质量,尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,放流动性良好,有利于铸造薄壁和结构复杂的铸件。

    铸法铝合会的分类、牌号
        铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表3中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。

    表3铸造铝合金的牌号
    序号  合金牌号  合金代号  序号  合金牌号  合金代号  序号  合金牌号  合金代号  
    1  ZALSi7Mg  ZL101  10  ZALSi12 Cu1Mg1Ni1  ZL109  19  ZALCu5MnCdA  ZL204A  
    2  ZALSi7MgA  ZL101A  11  ZALSi9Cu2Mg  ZL111  20  ZALCu5MnCdVA  ZL205A  
    3  ZALSi12  ZL102  12  ZALSi7Mg1A  ZL114A  21  ZALR5Cu3Si2  ZL207  
    4  ZALSi9Mg  ZL104  13  ZALSi5Zn1Mg  ZL115  22  ZALMg10  ZL301  
    5  ZALSi5Cu1Mg  ZL105  14  ZALSi8MgBe  ZL116  23  ZALMg5Si1  ZL303  
    6  ZALSi5Cu1MgA  ZL105A  15  ZALCu5Mn  ZL201  24  ZALMg8Zn1  ZL305  
    7  ZALSi8Cu1Mg  ZL106  16  ZALCu5MnA  ZL201A  25  ZALZn11Si7  ZL401  
    8  ZALSi7Cu4  ZL107  17  ZALCu10  ZL202  26  ZALZn6Mg  ZL402  
    9  ZALSi12Cu2Mg  ZL108  18  ZALCu4  ZL203       

    2 铸造铜合金

      

        铸造铜合金是工业上广泛应用的一种铸造合金材料。铜基合金因具有良好的对淡水、海水及某些化学溶液的耐蚀性能而大量用于造船及化学工业。铜基合金又由于具有良好的导热性及耐磨性,故也常用于制造各种机器上承受重负荷及高速运转轴的滑动轴瓦轴套等。
        铸造铜合金分为两大类,即黄铜与青铜。黄铜是以锌为主加合金元素的铜合金。在铸造黄铜中又因加入其它合金元素而形成锰黄铜、铝黄铜、硅黄铜、铅黄铜等。在铜合金中不以锌为主加元素的统称为青铜,如锡青铜、铝青铜、铅青铜、铍青铜等。在国家标准中规定铸造铜合金共有9种,计29个牌号。
    3 其他有色合金

      

        除了铸铝合金和铸铜合金以外,还有很多种铸造有色合金。其中比较常用的是铸造镁合金、铸造钛合金和铸造锌合金。镁合金和钛合金由于具有高的比强度,故多用于航空工业。其中钛合金还对多种腐蚀性介质具有很强的耐蚀性,故也用于制造石油化工设备上经受腐蚀作用的铸件。锌合金具有比较高的强度和优良的铸造性能,故广泛用于制造薄壁的和结构复杂的铸件。
        在铸造方法上,铜合金及其它有色合金除了采用砂型铸造外,还广泛采用金属型铸造、离心铸造、低压铸造以及石墨型铸造等多种特种铸造方法。
        在铜合金铸造中,采用金属型铸造方法,以加速合金的凝固,对提高铸件质量,减少铸造缺陷,具有重要的作用。金属型铸造可细分晶粒(特别对于铝青铜和锰黄铜),减少气孔,提高合金的机械性能和气密性(对锡青铜特别重要),在铅青铜等高含铅量铜合金中,采用金属型(以及水冷金属型)铸造,能防止铜成分的偏析。又由于铜合金铸件中,筒形零件(轴承、衬套)等较多,故采用离心铸造方法较多。此外,大型铸铜件(如大型船用螺旋桨)还可采用低压铸造方法,以提高合金的致密度,并减少铸件在浇注过程中产生的夹杂物。某些铜合金(如铅黄铜)还可采用压力铸造方法。
        镁合金由于铸造性能较差,特别是容易产生热裂,故大部分镁合金铸件仍是采用砂型铸造,仅小部分形状简单的铸件,可用金属型铸造。压力铸造方法在镁合金铸造中用得很少。
        锌合金具良好的铸造性能,充填铸型能力强,且不产生热裂,故特别适宜于采用金属型和压力铸造。在大量生产中常用压力铸造方法生产薄壁和结构复杂的锌合金铸件。
        钛合金由于化学活泼性极强,在铸造过程中钛液与大多数铸型材料(包括各种型砂及钢铁)都发生相互作用,致使铸件被沾污,故只能用特殊的铸型材料(如氧化钍或石墨)来铸造。
    4 铸造有色合金的熔炼

      

        熔炼工艺对有色合金铸件的性能和缺陷有很大影响。多数有色合金易产生气孔和夹杂,尤其是钛合金、铝合金、镁合金和某些铜合金。一般的熔炼工艺流程是:
        1)根据铸件技术要求所规定的合金牌号,可查出合金的化学成分范围,从中选定化学成分;
        2)根据元素的烧损率和成分要求,进行配料计算,得出各种炉料的加入量,并选择炉料。若炉料受到污染,则需要进行处理,保证所有的炉料清洁、无锈,并在投料前进行预热;
        3)检查和准备化用具,涂刷涂料,并预热,防止气体、夹杂物和有害元素的污染;
        4)加料。一般加料顺序为:回炉料、中间合金和金属料,低熔点易氧化的金属料,如镁,在炉料熔化之后加入;
        5)为了减少合金液的吸气和氧化的污染,应尽快熔化,防止过热,根据需要,有的合金液须加覆盖剂保护;
        6)炉料熔化后,进行精炼处理,以净化合金液,并进行精炼效果的检验;
        7)根据需要,进行变质处理和细分组织处理以提高性能,并检验处理效果;
        8)调整温度,进行浇注。有的合金在浇注前要进行搅拌,以防发生比重偏析。
    您需要登录后才可以回帖 登录 | 免费注册

    本版积分规则

    QQ|手机版|Archiver|热加工行业论坛 ( 苏ICP备18061189号-1|豫公网安备 41142602000010号 )
    版权所有:南京热之梦信息技术有限公司

    GMT+8, 2024-5-25 15:24 , Processed in 0.152222 second(s), 22 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2020, Tencent Cloud.

    快速回复 返回顶部 返回列表