纳士达 都百特 鑫工艺

热加工行业论坛

 找回密码
 免费注册

QQ登录

只需一步,快速开始


查看: 18137|回复: 42

[交流] RST效应造成的裂纹是怎样的?

    [复制链接]
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

    发表于 2011-10-23 07:49:17 | 显示全部楼层 |阅读模式

    马上注册,结交更多热工坛友,更多精彩内容等着您!

    您需要 登录 才可以下载或查看,没有帐号?免费注册

    x
    RST效应造成的裂纹存在形式是怎样的呢,如何分布,一般裂纹大小多少呢,有解剖下来判定是RST效应造成的裂纹不,探伤能判断不

    评分

    参与人数 1热加工币 +3 收起 理由
    adazhao + 3 不错的讨论主题

    查看全部评分

  • TA的每日心情
    开心
    2020-3-23 11:57
  • 签到天数: 4 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    发表于 2011-10-23 07:54:54 | 显示全部楼层
    回复 1# smg016 , \3 g" J  W* g) g

    3 W5 P/ f5 L, b/ R4 P5 b1 Y- A( e6 _3 \; \
    供大家参考。
    ! g% \; a2 _, J& p! [5 C1 k" g1 Q, N6 |3 v0 I. T6 A. g; V# O" O8 y
    摘要:大型自由锻件在生产过程中存在一种新的力学效应(RST效应),它会导致产品内部出现夹层裂纹缺陷。经过观察和分析,提出了避免其危害的工艺准则。
      c5 X/ i" I( E; z' ]7 F+ F( z
      ~; u+ Z% t7 z+ R! }1 |/ Q( G! J+ U" e3 t/ G% Y  I  T
    长期以来,一些大型自由锻件的质量问题是在超声波探伤时,出现大面积密集型缺陷,严重时底波降低,甚至完全消失。 : [' B' P8 [6 p% s. y$ D

    3 Q- ^* f* E- H+ Z$ D! Z/ f  y针对这种内部层状裂纹型缺陷,有人曾做过理论分析,提出了3种最有可能产生缺陷的理由:①未锻合的疏松;②夹杂性裂纹;③氢脆或白点。然后,根据显微观察来逐一辨别确认。但是,观察结果却排除了上述3种可能性。经过长期的观察和分析,推出了一个新的力学效应模型,即RST效应。

    大型自由锻件的RST效应.doc

    83 KB, 下载次数: 579

    评分

    参与人数 1热加工币 +5 收起 理由
    adazhao + 5 鼓励技术交流,有您参与更精彩! ...

    查看全部评分

  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-10-23 08:04:08 | 显示全部楼层
    回复 2# liyanfeng1 - z! W' B; r; E) }9 J! X2 E

    4 b3 r2 P4 }8 o1 Q- Y
    % q+ Y0 B: }' a3 w, R    这篇文章已经拜读,大致的形状与夹杂物造成的小裂纹分布差不多,具体裂纹的长度没有提及,我如何判定呢
  • TA的每日心情
    开心
    2023-5-15 13:11
  • 签到天数: 140 天

    连续签到: 1 天

    [LV.7]常住居民III

    发表于 2011-10-23 08:12:42 | 显示全部楼层
    我给大家贴出来) w7 ^) f2 D0 Z7 L8 N
    $ U+ e  c" Y( q$ j
    大型自由锻件的RST效应
    / g7 G; F+ I& k9 g, ?大型自由锻件在生产过程中存在一种新的力学效应(RST效应),它会导致产品内部出现夹层裂纹缺陷。经过观察和分析,提出了避免其危害的工艺准则。
    * _2 R: B2 p- p. W# f长期以来,一些大型自由锻件的质量问题是在超声波探伤时,出现大面积密集型缺陷,严重时底波降低,甚至完全消失。 0 l( M  z, K' t' F* w" x
    针对这种内部层状裂纹型缺陷,有人曾做过理论分析,提出了3种最有可能产生缺陷的理由:①未锻合的疏松;②夹杂性裂纹;③氢脆或白点。然后,根据显微观察来逐一辨别确认。但是,观察结果却排除了上述3种可能性。经过长期的观察和分析,推出了一个新的力学效应模型,即RST效应。9 w; p! Y, q3 V7 Q$ i; r; T
    1        RST效应的定义和产生条件 ! @7 ?2 w/ ?9 u' L% V) q; m
    大型圆饼类和板类自由锻件,在锻造成形过程中,经受很大的变形量后产生的内部层状裂纹缺陷,是由一种特殊的力学效应引起的,定义为RST效应(Rigid Slide Tearing Effect,刚性滑动撕裂效应)。 9 z  @% U+ ^2 @" [, A9 f
        图1表示了在锻造过程中产生RST效应的情况。
    5 s$ k: P& _" N5 Q3 F5 T其特点是:当锻造工具(砧子等)在与锻件相接触表面上两方向(如砧子的长度和宽度,镦粗为直径)的尺寸都大大超过坯料的高度时,致使坯料内上下两个刚性区相遇。随后,在压机力的继续作用下,产生刚性区内部的层状刚性滑动变形并导致撕裂。; F$ l( ]* i& @

    : p- `1 L, }& }' W8 D(a) 锻炼过程中上下两个刚性区“相遇”% g* g  @" B' `/ ]3 y
    # s& s8 m& O8 i. ~- e
    (b) 锻炼内部的RST裂纹 * V! ?& z8 a# a# \; J5 I8 M

    4 b& L: e6 V" u9 i* f图1 RST效应产生条件示意
    & M. A" `7 \0 w+ r% l8 @坯料内部的刚性区是由工具和坯料表面的摩擦引起的,也称“死区”或“摩擦锥”。实际上,刚性区内的金属一般情况下并不完全呈整体刚性状态,而是从表面对称中心开始,向坯料内部呈一定梯度的小应变速率分布。刚性区的边界也无严格的规定,技术人员常以应变速率<0.001 5-1为判别其边界的条件。图2表示了在平板间镦粗、平砧拔长锻板和上平砧、下转台成形管板的3种情况下,坯料内部刚性体(三维视场)相遇的模型。前2种情况具有变形对称的特点,刚性体分别为对称的上下锥台或棱形锻台;第3种情况为上下不对称的变形,刚性体也应为上下对称的棱形锥台。 1 w. ^% y( t) ]* d/ h

    * `5 b8 `! L& g" F1 v) _9 C(a) 平板间镦粗时内部刚性体相遇( V2 I+ A2 N  [  O/ H8 K4 [* T

    4 K9 Q* F# h, [. g: r  D% R1 R- I(b) 平砧拔长时内部刚性体相遇8 N7 A8 \+ q. U, o
    - C4 ]7 V0 `+ x( i
    上平砧、下平台成形管板时内部刚性体相遇
    : L7 Q4 Z6 y5 h/ s6 y7 a7 V1 x8 e图2 不同锻造方式下坯料内部的刚性体
    ( k9 D+ B0 G6 _: N1 x* U% B* f由此看来,导致RST效应的先决条件为:
    . z. s3 Z8 ~$ J) B  j# f9 H(1) 特殊的边界条件和工具尺寸条件,如摩擦系数μ,砧子的长度L,进砧宽度W及坯料高度H。
    $ S5 F- L# l+ K' C" M" \) {5 l' c% a) G(2) 在上述变形条件下形成坯料内部的刚性体相遇后,继续施以一定的压下变形量。
    . j6 u4 m' s' J(3) 刚性体内部的金属完全失去弹性和塑性变形能力,在压力下继续强制性变形,被迫发生层状刚性滑动(或层状脆性滑动),直至超过材料的剪应变强度而撕裂破坏。
    ; @2 u: p1 n4 G) G2 RST效应的作用机制
    " D" c! A- B* G' E1 _- t6 Q& Q7 v0 aRST效应并不是在瞬间突然作用的,其机制按力学特性分为3个发展阶段:①弹性压缩变形,②刚性剪切变形,③刚性滑动撕裂。
    $ c- N! S# m7 R7 C, t( l/ |弹性压缩变形阶段是指坯料内部上下两个刚性体发生了接触,并且在外力的作用下继续相向运动时,在刚性体内部产生弹性变形的过程。这一阶段一般比较短暂,在两刚性体接触宽度内的弹性潜能充分释放后,这部分材料就被“压实”了,如图3所示。 7 @% |6 F; f' B" w/ [& d/ q

    0 R' o- a5 r9 u% N. e图3 RST效应作用第一阶段机制示意图 " p9 ^+ n; o7 o- G
        (a) “死区”未接触;(b) 刚刚相遇,弹性压缩变形开始;c 弹性压缩变形结束。
    , k/ V5 K9 ?+ j. A" `刚性剪切变形阶段,是指在坯料内刚性体中的“压实区”已不具有弹性压缩能力的情况下,继续受力强制压缩,使其高度减小,迫使金属发生类似层状的横向运动,如图4所示。( Y9 ^: c, K- s9 c

    8 P" X+ R# J* s3 c( [  Z2 `" z图4 刚性剪切变形阶段特征
    , Q( g6 a  `) f) g图4还给出了在受力中心线上横向运动速度的分布。
    0 l' ]! X. C, n. W由于坯料受表面摩擦的影响,与刚性体的形状有关,所以这种速度的分布从表面到中心呈一定的梯度。由于“压实区”内各金属层(刚性层)之间存在着横向移动速度的差别,便导致产生了相邻层间的剪切运动,所以称之为刚性变形阶段。 0 M$ e/ W) l* |- H5 u+ E" i: v' Q
    刚性滑动撕裂阶段是指在刚性层间的剪切变形量达到某一极限值(即此时的材料剪切强度)时开始的撕裂破坏过程。首先,在部分刚性层间产生裂纹,然后再继续滑动撕裂扩大,直至坯料外部的受力压下变形结束为止。在这个过程中,处于“压实区”内的金属已实际上具有如同岩石一般脆性材料的特性了。图5表示此阶段的坯料内部特征。
    ) I; g( g* H3 O) Q ( q0 K8 U% Z* M  [( Y* A
    图5 刚性滑动撕裂阶段特征
    # J% A2 J5 s- c) N事实上,在描述这一过程中“压实区”内金属的性质,无论用“刚性”或是“脆性”都不十分合适。这是因为刚性指不变形的意思,但是它又不象脆性材料那样,在压缩时呈近似45°角的破坏。
    8 g+ ]' I5 v6 n; y3 避免RST效应的工艺准则5 C6 f* i+ y5 k! Z3 X  Y$ d! }
    根据RST效应的作用机制,只要合理控制锻造时的工艺参数,使坯料内部的刚性体不发生相遇,就可以完全避免由RST效应导致锻件内部产生“层状裂纹”的缺陷。图6表示了平砧锻造时,工艺参数(砧宽W0,坯料高度H)和刚性体尺寸参数(摩擦角α、β,刚性体高度h,l)之间的关系。 + w  j& I8 r! t, k
    & u5 r; |9 z" {) L2 u2 P
    图6 工艺参数与刚性体尺寸之间的关系
    8 E' E6 H. x# t* e$ k( q4 m9 u: L4 T通常,成形管板和锻板时在砧子长度方向上与坯料接触的尺寸总是远大于坯料高度H,但是只要合理控制进砧宽度W,就可以避免刚性体相遇。考虑变形对称的场合,几何参数有如下关系:
    ) Z4 N: f5 D6 A4 k/ O            α=β,h=l  (1)
    " A7 G. L6 G" H- l在一般的高温(如T≥1 100 ℃)变形状态下,摩擦系数μ大约在0.37~0.42之间。当W/H=1时,
    5 H  Y0 V$ }& u( ?- Q            α=33.3 °~37.0 ° h=l=0.37~0.42 H。 (2)
    - p" X, g  J9 n: b0 X- r/ y6 w实际成形管板和板坯时,在初始阶段由于坯料的高度尺寸较大,W总是小于H,只是在成形后期才会出现W>H的情况。由于这时坯料表面温度已经降低(≤900 ℃),所以将摩擦系数μ按0.37计算,在W/H=1.35时,坯料内部的上下两个刚性体才会相遇。此外,考虑到在此时的温度条件下,压下变形量不宜太大(εh≤15%),以及在压下过程中,由于坯料的伸长和展宽,使W值发生增长(约10%)现象。另外,为了保证良好的内部变形效果,使初始时的W/H≥0.5,所以规定了避免RST效应的锻造成形工艺准则为: ' C4 D' @. H( a( U, E
    0.5≤W/H≤1.0, εh≤15%  (3)
    5 F# S' z! Y# |: k: h7 S' C在由镦粗成形的场合,应限制锻件径高比为: & z( D* D7 I/ _% Y3 n7 o. v
    D/H≤1.35或H/D≥0.74  (4)
    ; @9 K0 p  w" s2 g$ v其中,式(3)对上下变形不对称的场合也适用。
    7 {: a4 M" \7 m/ t4 X! \; j4 结论 ) m; \5 @9 c0 w
        RST效应主要与在锻造成形过程中,因表面摩擦影响产生的坯料内部刚性体高度有关,其发展过程有弹性压缩变形、刚性剪切变形和刚性滑动撕裂3个阶段。合理控制锻造成形过程中的砧宽比和压下量两个工艺参数,可以有效地避免RST效应的危害作用
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-10-23 08:30:38 | 显示全部楼层
    提出交流的背景:Φ2880x150的2块管板探伤不合格,缺陷形式如下图% n$ P; o' T: m1 I. n( P) @5 B
    缺陷.jpg

    评分

    参与人数 1热加工币 +5 收起 理由
    admin + 5 鼓励发起技术讨论!

    查看全部评分

  • TA的每日心情
    奋斗
    2024-4-22 05:59
  • 签到天数: 273 天

    连续签到: 1 天

    [LV.8]以坛为家I

    发表于 2011-10-23 09:37:13 | 显示全部楼层
    这篇文章你看看有没有帮助?
    0 _+ ]" Q' w' y: {- @! K' A& y% g: v
      圆饼类锻件镦粗过程的数值模拟研究
  • TA的每日心情
    开心
    2020-3-23 11:57
  • 签到天数: 4 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    发表于 2011-10-23 10:23:30 | 显示全部楼层
    回复 6# admin 8 j) _, A& g3 D3 a# J; H9 Z) \
    2 M* h! @5 c) _- W$ }4 a1 U
    - T+ O' h$ w) ?! L- m3 \$ a
        看了两遍。没说怎么解决。
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-10-23 10:34:24 | 显示全部楼层
    回复 7# liyanfeng1 8 Z# C+ P. B6 e$ k/ [! p/ j

    1 m& M8 h3 X8 y$ H" c5 O# Z! P- m0 ?+ c$ J9 i
        我是看了大家的,没讲到一般这样的缺陷具体能够有多大,缺陷大小没有什么说法,探伤波形如何
  • TA的每日心情
    开心
    2024-3-5 16:13
  • 签到天数: 39 天

    连续签到: 1 天

    [LV.5]常住居民I

    发表于 2011-10-23 12:28:39 | 显示全部楼层
    RST 是一种学者的提法,强调是刚性滑动。实际生产中的缺陷千差万别,不能有一个模型来解释和解决。管板的问题是一个老大难的问题。RST主要强调是锻造过程的不合理引起的缺陷。
  • TA的每日心情
    开心
    2020-3-23 11:57
  • 签到天数: 4 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    发表于 2011-10-23 12:38:33 | 显示全部楼层
    解决更重要,更实际。
  • TA的每日心情
    开心
    2019-5-13 06:59
  • 签到天数: 251 天

    连续签到: 1 天

    [LV.8]以坛为家I

    发表于 2011-10-24 06:42:24 | 显示全部楼层
    只给密集缺陷不知大家怎样去理解它,杂质?疏松?还是其它?
  • TA的每日心情
    开心
    2016-6-11 22:29
  • 签到天数: 5 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    发表于 2011-10-24 08:13:40 | 显示全部楼层
    温度越高,形成RST效应的可能性越小。
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-10-24 08:36:56 | 显示全部楼层
    回复 12# 刘布平
    1 K1 B0 {( m4 S8 J) M  w$ X8 F" R8 w' W# E  o

    * k5 k( c2 A/ a& b, ~    刘工分析的是,我给我们锻造师傅说起这件事,他也觉得温度低了造成的,但是压缩过程中芯部受挤压后温度应该高啊
  • TA的每日心情
    开心
    2016-6-11 22:29
  • 签到天数: 5 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    发表于 2011-10-24 08:55:06 | 显示全部楼层
    我个人理解这RST效应就是:与砧块接触的铁由于摩擦形成刚性锥,下压的过程就是刚性锥楔入机体的过程,有点像错移变形,金属流动发生在刚性锥与机体交接面最为激烈,温度低了就裂了。像这种缺陷,要是改锻后又可以锻合。
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-10-24 08:59:53 | 显示全部楼层
    回复 14# 刘布平 % ~' {& a+ `3 S6 M
    3 ~: m/ Q3 ^/ a" m9 X( E( K
    , T6 ^3 W& L. F" N% p. ]( i  @
        你们那块改了么?等待你的结果
  • TA的每日心情
    开心
    2024-4-18 15:29
  • 签到天数: 44 天

    连续签到: 1 天

    [LV.5]常住居民I

    发表于 2011-10-24 17:24:29 | 显示全部楼层
    同意9楼的观点,RST效应是一些学者为解释管板类产品中心密集缺陷而建立的力学模型,北重、燕山大学等对此有论述,是否正确不得而知,至少在一些比较权威的锻造书籍中都没有提及RST效应,比如《锻造手册》4 l6 d% T' m5 w# }* ~1 D3 d( ]9 L. y
       有经验的锻造技术人员都会发现这样的事实:同样形状的并类锻件、同样的锻造工艺,45、42CrMo钢一般不会有什么问题,而20MnMo、16Mn却经常出现中心区域的密集缺陷。RST效应仅出现在20MnMo、16Mn锻件中,而不出现在45、42CrMo锻件中?显然不是。
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-10-24 18:37:16 | 显示全部楼层
    回复 16# forgin-g / T/ O+ N3 D1 [( E/ ?) }

    ! @$ `6 P, m* s$ [$ Z
    2 ]. a; l6 z7 o5 v4 ]     您说的有道理,现在16Mn,20MnMo的居多,不过45,42CrMo我们没做这么大,不知道有没有这样的缺陷,也有待大家提出不同材质是否有这样相同的缺陷
  • TA的每日心情
    擦汗
    2023-6-5 16:37
  • 签到天数: 174 天

    连续签到: 1 天

    [LV.7]常住居民III

    发表于 2011-10-24 21:46:05 | 显示全部楼层
    45#的没发现出现这种情况,还有和16Mn一样的Q345也有此类问题
  • TA的每日心情
    开心
    2018-8-7 13:47
  • 签到天数: 10 天

    连续签到: 2 天

    [LV.3]偶尔看看II

    发表于 2011-12-9 21:14:19 | 显示全部楼层
    出现比较多的是20MnMo这样的低合金钢。我五年前解剖过此类缺陷,跟白点有点类似,在裂纹腐蚀后伴有夹杂物存在。低倍图片该改天找一找传上来。
  • TA的每日心情
    奋斗
    2018-3-3 16:24
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

     楼主| 发表于 2011-12-10 07:38:14 | 显示全部楼层
    回复 19# paomianji
    9 ^1 @4 B+ m- G, B
    2 ?0 p( Y. |9 s/ t, e& Z8 l
    + c5 v) L8 D5 q: m5 p5 m) ^    期待你的分享! Y0 B9 }& U+ _, `/ I* n6 x  a
    你描述的这类现象我是这么理解的,由于变形量过大,将分散的夹杂物连成了条状,由小缺陷变成了大缺陷
    您需要登录后才可以回帖 登录 | 免费注册

    本版积分规则

    QQ|手机版|Archiver|热加工行业论坛 ( 苏ICP备18061189号-1|豫公网安备 41142602000010号 )
    版权所有:南京热之梦信息技术有限公司

    GMT+8, 2024-5-18 08:20 , Processed in 0.232318 second(s), 26 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2020, Tencent Cloud.

    快速回复 返回顶部 返回列表